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Abstract The notorious ambiguities of jet finding algorithms are reinterpreted as their 
instability with respect to small variations of input. An optimal stability is ensured if the 
observables satisfy a fundamental requirement of the so-called calorimetric continuity 
(C-continuity); its exact form is uniquely determined by the “kinematical” structure of 
multimodule calorimetric detectors. ‘The so-called C-correlators form a basic class of such 
observables and fit naturahy into the framework of Quantum Field Theory, which opens a 
prospect of their systematic theoretical study. There are a few simple rules to build other C- 
continuous observables from C-cormlators. The resulting C-algebra of observables allows one 
to quantify any physical feature traditionally studied in jet physics such as the “number of jets” 
and the mass spectra of “multijet substates”. The new observables are physically equivalent to 
the traditional ones but can be computed directly from final states bypassing the representation 
of the latter in terms of jets. Jet algorithms are shown to reemerge as a tool of approximate 
computation of C-continuous observables from data, with all ambiguities under anaIytical 
control. An optimal n + 1 recombination criterion is derived that minimizes the resulting 
approximation errors. * Quickpreview on nextpage 
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Quick preview 

l Thii work gives an answer to the question “what is 
a jeP The answer is a purely “kinematical” one 
(which most expem awn to be ill-prepared for). and is 
baaed on an analysis of %inematics~ of calorimetric 
detectom ‘%iaematical” aspect of QFf obsexvables. 
sod error enhancement properties of data processing 
algotirhtna. The aoswer is as follows. 

“‘Jets” and “ja findiog algorithms” arc simply toola 
of approximate description of data (in a macrete sense 
explained below). Their physical significance does not 
go deeper than dx leading 0th QCD predictiona 
(which in many cases is deep enough, of course). As 
any approximation, it is useful as long as one is satir 
fied with its pm&on. 
l Improving upon that approximation does not meau 
finding a “perfect jet algorithm”. The notion of a par- 
feet jet algorithm is physically ill~onceived because of 
the non-deterministic quantum nature of hadronization. 

Instead, the “ideal solution” is based on the formal- 
ism of C-algebm. The C-algebra is a family of “well- 
behaved” observables together with a few translation 
rules that allow one to reproduce practically any con- 
ventional obsewabIe based on jet algorithms. For in- 
stence, take a mnvmtionat distribution of events with 
respect to. say, invariant masses of Z-jet substates, 
pzd (m) (e.g. with e peak due to a ttew particle at some 
value of mass). One can write down an obsewable from 
the C-algebra - calI it p$(m) - that is aa “ideal sc- 

lution” which p:?(m) approximates in the following 
sense. One cau mqwe the new ohsewahle from the 
jet pattern of an event (using any reasonable jet algo- 
rithm) - and the result will be, by construction, simi- 
lar to the conventional Z-jet mass distribution &a (m): 

&m) liccpalum -p$%O. 0.1 

Note that the rhs. cannot be computed otherwise than 
from the jet pattern. On the contrary, the new observ- 
able is defioed in such a way that it can also be com- 
puted directlyfwm the “raw” event (i.e. the event prior 
to application of a jet algorithm) - and the result will 
be as follows: 

P$(rn)l,,, =P+O(pp,,+O(Y,t)- 0.2 

(In the case. of cone-type algorithms the error is O(R) 
where R is the jet cone radius.) 

To emphasize: the distribution p$(m) is physically 

equivalent to the conventional Z-jet mass distribution 
and can be computed without aaually identifying indi- 
vidual jets. 

A similar “uausIation” can be accomplished for any 
other jet-related quantity. 
l The jet algorithms are a useful approximation tool 
because computing p$(m) (= the ideal 2-jet mass 
spectrum) from the jet pattern of an event is easier than 
fmm the ‘kaw” event banse there an many fewer jets 
thsn panicles. It is also clear how the approximation 
cm be itqmv& one should simply compute the uew 
observable p:(m) from jet patterns for as small y, as 
possible - or direaly f?om raw data if ooe has enough 
mmputtr nsources to do so. 
l The q otmious “ambiguities of jet definition” are 
&en. eseatialIy, the inevitable approximation errors in 
Eq.0.2. They am gotten rid of by letting ycu + 0. 
l The formalism of C-algebra is a purely “kinemati- 
cal” one: it camtot help one, e.g., to detetmioe the ob 
servabIe with which a new particle is best seeo against 
backgmuod. But it can help one to squeeze the most out 
of data once such an observable is found. For instance, 
pi(m) is, by constn~tion, less sensitive to data errors 

than pgr((m). 

l Although the perfect jet algorithm is a fiction, an 
“optimal” one is not: it is the algorithm that minimizes 
the erm in 0.2 for a given y, for the observables 

such as p&t). Such aa “optimal prcclustering” can be 
found analytically in an explicit form. 
. The results of this work should MI to be interpreted 
in the sense that “one should not count jets”, nor that 
one should throw out the old co& and start implement- 
ing the “ideal solution”. What is being suggested is that 
various featutes of the ideal solution should be incre- 
mentally built into the existing prwedurcs depending 
on: the computer resources available. the required pre- 
cision of the results. and the level of understanding 
achieved. The ways to improve the conventional data 
processing are as follows: 
- Regularization of (all) hard cuts (Sec.2.5; perhaps 
iucluding spli-based schemes described in Sec.15 in- 
stead of the. bin-type ones). 
- One “optimal” preclustering (Sec.7) instead of all 
conventional jet algorithms (recombination and cone- 
W). 
- Replacing conventional observables with their C- 
ardngues (for this one has to learn to translate physics 
into the language of C-algebra, which should not be too 
difficult with the examples given in Sets. 1043). 
- Exploiting the fully explicit and essentially simple 
analytical form of C-observables to develop more 
flexible and precise computationsl schemes thao what 
is possible with the conventional rather rigid algo- 
rithms. 0 



Introduction and overview 1 

The jet paradigm 1.1 

The jet paradigm is the foundation of the modem high-energy physics. It is based on the ex- 
perimental evidence for hadronic jets [l] and a QCD-based theoretical picture [2] of the had- 
ronic energy flow in the fwl state inheriting the shape of partonic energy flow in the underly- 
ing hani process. The association of each jet with a hard panon [3], [4] is the qualitative basis 
for comparison of data with theory. Its straightforward quantitative impiementation leads to 
the so-called jet finding algorithms. For each tinal state (event) P, such an algorithm computes 
what may be called its jet pattern Q - i.e. the total number of jets in P and the 4-momentum 
of each jet: 

p={P,‘P2’...PNpm} jet finding algorithm 
) Q={Q~.Q~..-.Q~~~~} n 1.2 

where pi are the 4-momenta of the particles in the linal state while Qj are the 4-momenta of 
the resulting jets. While the event may have O(100) particles, a majority of events have only a 
few jets. Therefore, the jet pattern Q has typically much fewer 4-momenta than the original 
event P and can be studied much easier. Moreover, such a reduction of information brings out 
the physics of the process being studied: For instance, if an unstable virtual panicle decayed 
into quarks and gluons that hadronized into jets, the invariant mass of the corresponding group 
of jets is close to that of the decayed particle. 

On the use of such algorithms the current practice of measurements in high-energy physics is 
founded.’ 

Ambiguities of jet algorithms 1.3 

Unfortunately, hadronic jets have a finite angular width and irregular shape. So when their 
angular separation is not large enough they are hard or impossible to resolve. Then the answer 
(the jet pattern Q 0~1 thz r.h.s. of 1.2) depends on inessential details of jet finding algorithms. 
As a result, the ambiguities of jet definition remain a subject of ongoing discussions (“What is a 
jet?” [6], [8]). Moreover, as the research moves on to physical problems with more stringent 
precision requirements, the ambiguities of jet definition manifest themselves quite tangibly: Re- 
cent results of Monte Carlo modeling indicate that the dominant uncertainty in the determina- 
tion of the top quark mass at the LI-IC is expected to be due to ambiguities of jet definition [9]. 

Purpose of this work 1.4 

The purpose of this work is to reexamine the problem of ambiguities of jet algorithms in a 
systematic fashion from the point of view of first principles of physical measurements. I main- 
tain that a clarification of the issues of kinematics and measurements must be achieved before 
one will be in a position to discuss dynamics in a completely meaningful fashion. For instance, 
the qualitative physical notion of length (of, say, sticks) is known to be quantified by real num- 
bers, and the continuity of the latter plays a crucial role in the analysis of measurement errors. 
What is the precise mathematical analogue of the qualitative physical notion of energy flow of 

’ For an introduction to the uses of hadrooic jets in experimental studies of the Standard Model see e.g. [S]. 
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collision events? And what is the corresponding continuity that would allow one to control ef- 
fects of measurement errors in a systematic fashion? (Cf. below Table 4.28.) 

The focus on the aspect measurements and kinematics constitutes the key difference of this 
work from the conventional approach that emphasizes the dynamics of jets.’ 

Understanding the problem 

The physical problems where jets ate involved can be divided into two classes: 

1.5 

. In the problems of exploratory type one may be satisfied with observing an effect at a 
minimal sufficient level of statistical signilicance. This is usually the tirst stage in studies of any 
new class of physical phenomena. For instance, in what may be called descriptive theory of 
hadronic jets one studies the dynamics of jets as such”, and one is mostly interested in qua- 
litative effects that occur already in the leading order of perturbation theory. Another example 
is the search for top quark [12], [13]. 
. Precision measurements comprise quantitative studies of the Standard Model”‘, e.g. pm- 
cision measurements of Es(Qz), the mass and width of the top quark etc. In such problems 

jets are only an auxiliary intermedii notion. 
Clearly, the two classes of problems differ with respect to the requirements on the data 

processing algorithms employed. In the first case, one would lie to have simple and fast al- 
gorithms that allow one to represent the corresponding qualitative physical features in a most 
direct and visual manner even, perhaps, at the cx,~.nse of numerical precision.” On the other 
hand, in applications of the precision measurement class the overriding concern is the highest 
precision attainable for a given event sample. Note that even in the exploratory problems one 
may encounter a situation with a low signaVoackground ratio so that even to establish exis- 
tence of an effect one may need to squeeze out every bit of physical information from data, 
which may be impossible with cm& methods. 

Measurements or a modeling of dynamics? 1.6 
One may notice that jet algorithms were invented in the context of the problems of explora- 

tory type” and their systematic use for data processing in the precision measurement applica- 
tions may not be accepted uncritically. 

Indeed, theoretical research on jet definition algorithms has traditionally been performed in 
the context of studies of hadronization. The latter is a non-perturbative phenomenon, is ill- 

’ This fact is likely to ignite an ideological discussion. As a preemptive measure, I’ve made an attempt to clarify 
certain implicit assumptions behind the conventional point of view on jet counting. This resulted in 
“philosophical” arguments that arc somewhat lengthy and which a pragmatist may not approve of. The subject 
of hadronic jets, however. is fraught with prejudice (as I discovered in many conversations with both theorists 
and experimental&s), and it is hard to discuss unarticulated attitudes in brief. I may add that all 
“philosophical” arguments of this paper are more or less direct answers to questions raised and attitudes exhib- 
ited. by many physicists with whom I discussed these matters. 
‘. A good review mostly devoted to this sort of physics is [IO]. 
yI For a review see e.g. [5]. 
’ For instance. one may need to find - very much by trial and error - an observable with respect to which to 
performcuts so as to suppress background [12], 1131. 
* Cf. [2] as well as the fact that the recombination algorithms of a modem type were invented in the context of 
Monte Carlo event generators [14]. 
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understood, and presents a fascinating field of study. As a result, the problem of adequate nu- 
mericai description of mutlijet structure has come to be regarded as a “physics issue” that con- 
cerns the “underlying jet dynamics” rather than “kinematics” and “geometry”’ and that instead 
“the main point is that one would li‘:- .: to identify a class of c.. .> observables that are in closer 
correspondence with the underlying jet dynamics”.” 

The importance of understandiig hadmnization and jet dynamics is indisputable. But in the 
context of precision measurements such a point of view makes hardly more sense than requir- 
ing that rulers and clocks reflect the “underlying dynamics” of gravity when one studies the 
laws goveming trajectories of failing bodies. The rulers and clocks do reflect properties of the 
external world - but only in the kinematical aspect: first and foremost, we want our rulers to 
be straight and clocks, precise. 

Of course, there is a valid point in the “dynamical” argument, too. Indeed, some a priori in- 
formation on the underlying dynamics may help one to perform measurements where they are 
most informative (choosing objects of convenient weight to drop from a tower of convenient 
height and inclination; or by restricting a search for a new particle to events satisfying certain 
kinematical cuts; etc.). 

But the “tiematical” requirement of correctness of measurements (including the data proc- 
essing stage) is a matter of tirstest concern when the precision of results is an issue. Therefore, 
it makes sense to examine the problem of studying the hadronic energy flow as a problem of 
measurement, and to try - instead of attempting to solve the mathematically ill-posed problem 
of inverting hadronization - to tind “straight rulers” for measuring the multi.ict structure of 
multihadmn ftnal states. 

One may further notice that defining individual jets is only an auxiliary intermediate step in 
any precision measurement application. A good deal of its attractiveness is due to simplicity of 
the jet pattern one has to consider at the final stage (when the parameters one measures are 
actually obtained) and the simplicity of the conventional jet algorithms. Simplicity and speed, 
however, ate not the matters of primaty concern in precision measurements - the precision is. 
It makes sense, therefore, to ask which algorithms may be best for that patticular purpose. 
Having found such algorithms, one can then proceed to optimize them while being fully aware 
of all the tradeoffs involved. 

Then the crucial fust step is to subject to a scrutiny the key implicit assumption already pres- 
ent in the question “what is a jet?” - the assumption that the data processing of the form 1.2 
is the only way to quantify the multijet structure. The theory of calorimetric observables for 
measuring multijet structure outlined in [15], [16]. [17], [18], [19] and systematically devel- 
oped in this paper proves the assumption to be wrong. 

Ccorrelators and C-algebra 1.7 

I argue that the fundamental means (the “straight rulers”) to measure the multijet structure 
are not the jet algorithms 1.2 but the so-tailed C-correlators”’ - i.e. the observables of the 
following genera) form: 

’ which are, no doubt, lowly subjects that have nothing to do with The Profound Physics, 
iThe quotations am from the report of Referee A on the first version of [15]. 

C from “calotimetic”. The prefix will be widely used below. 
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where Ei and ji are the energy and direction of the i-th particle (or calorimeter cell), each 
summation runs over all particles in the event (all cells that lit up), m is any positive integer, 
and fm is any smooth symmetric function of its m arguments. 

Special cases of such correlators have been well-known for a long time, e.g. the special se- 
quences of observables studied in [20], 1211. The energy-energy correlators of 1221 are also 
closely related to the C-correlators but correspond to diicontinuous f, of a special form. 
However, it has never been real&d that the following two properties of the functions 1.8 give 
them a very special role in studies of multljet structure: 

Fiit, the observables 1.8 have a form of multiparticle cot-relators that is natural from the 
point of view of Quantum Field Theory. This is further discussed in Secs.2.2 and 6. Second, 
they have special stability properties with respect to data errors - a stability that can be briefly 
described as follows. 

Ccontinuity 1.9 

Consider any observable 1.8, any two events and any calorimetric detector installation; if the 
two events P’ and P” (whatever their numbers of particles etc.) are seen by the detector instal- 
lation as the same, i.e. P’ = P” within data errors, then the corresponding two values of the 
observable are guaranteed to stay close, F,,,(P’) = F,,,(P”), with the difference depending on 
the observable and vanishing together with data errors. Note that with jet algorithms this is not 
always the case: two such events may yield different numbers of jets - and a difference of two 
unequal integer numbers cannot be made less than 1. 

The described stabiity is a form of continuity (we call it C-conrinuiry; its precise description 
is given below in Secs.4-5). Its importance is due to the fact that, given the same statistical 
measurement errors in the input data the statistical error of an observable that is continuous in 
the above sense IS. in general, less than the error of the corresponding cutoff-type observables 
(Secs.2.5 and 3). 

It is also important to understand that the role of C-continuity is not limited to the issues of 
data errors as such but concerns other types of small variations as well, such as higher order 
corrections, computational approximations, minor programming variations, etc. 

The above two properties of C-correlators allow one to say that the collection of values of 
all such C-correlators constitutes the entire “physical information” about an event. Once one 
has understood that, one can reahxe that any aspect of multijet structure that can be meaning- 
fully quantified and measured, allows an expression in the language of C-correlators. 

Expressing physics in the language of C-correlators. Calgebra 1.10 

The next question is, how to translate the qualitative phenomenon of jets into numbers using 
only the C-cot-relators? The answer is not obvious because the energy dependence of the 
expression 1.8 is rigidly fixed. But once the central role of the C-cot-relators is understood (in a 
sense, C-correlators is all one can “see” about events using calorimetric detectors from the 
point of view of Quantum Field Theory), it becomes clear that such a translation must be 
possible. 

The translation is based on a few rules that allow one to organize. values of various C- 
correlators into new observables that (i) inherit the property of C-continuity and (ii) describe 
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various jets-related qualitative “physical features” one happens to be interested in. The expres- 
sive power of the resulting C-algebra of observables proves to be sufficient for the purposes of 
precision measurement applications where jets (within the conventional approach) are only an 
intermediate concept. 

There are two main applications for jet finding algorithms that can be classified as precision 
measurements. Both usually involve a classification of the events with respect to the number of 
jets ( Njcts in 1.2). 

The fti application may be described as ‘Tet counting”. The idea here is to count the fiac- 
tion of events for each number of jets in the final state. One then obtains what is called n-jet 
fractions (usually denoted as #jeu). They provide a more detailed information than the total 
cross section and prove to be greatly useful both for studying QCD and the Standard Model’. 
This is due to their simplicity and their more or less direct connection with hard subprocesses 
(each additional jet is associated with an additional radiated parton). For instance, the 3-jet 
fraction in e+e- annihilation in the lowest order of perturbation theory receives contributions 
from radiation of a gluon from the quark-antiquark pair. Therefore, it is directly sensitive to the 
coupling constant isi, and can be used to extract the latter from experimental data. It turns out 
that the physical information about the “number of jets” in the fmal state can be equivalently 
represented in terms of a special sequence of C-correlators 1.8 (the so-called jet discriminators 
J, introduced in [15], [16]; see also Sec.8 below). 

The other class of application is studying particles that decay into jets, which involves inves- 
tigation of mass spectra of multijet substates. Here one normally selects events with a given 
number of jets corresponding to the partonic subprocess where the particle is expected to be 
seen and then studies invariant masses of groups of jets/pattons in a more or less exhaustive 
fashion (i.e. considering all combinations of two jets if the particle decays into two partons). 
An example is the top search in a purely hadronic channel [23] where one would have to select 
6-jet events and then identify 3-jet substates that may be decay products of the top quark. The 
observables that can be used in such a context are the so-called spectral discriminators 
([19]; see also Sec. 10 below). They are somewhat more complex than the C-correlators 1.8 
but use the latter as elementary building blxkz. Spectral discriminators contain more informa- 
tion about each event than multijet mass distributions obtained via jet algorithms, and may al- 
low one, in principle, to measure the signal from a virtual particle that decays into jets even in 
sihutions where the jets are too wide to be resolved unambiguously with jet algorithms. If the 
higher computer requirements of the new formalism prove not to be prohibitive, this may allow 
one to bypass the limitations of the conventional jet algorithms (cf. Sec. 1.3). 

Calgebra and jet algorithms 1.11 

It is remarkable that the relation between the two approaches to jet measurements - the 
one based on jet algorithms 1.2 and the other on the C-correlaton 1.8 - is precisely that be- 
tween an approximation trick and an exact answer. Indeed, it is quite natural to regard the jet 
pattern Q on the r.h.s. of 1.2 as an approximate representation of the fmal state P on the 1.h.s. 
But what is an exact interpretation of the adjective “approximate”? The answer is, in the sense 
that the values of any C-correlator 1.8 for the r.h.s. and the 1.h.s. are numerically close, and 
what is known as the jet resolution parameter ycUt in the context of jet algorithms is simply a 

’ A major part of the proceedings [7] is devoted to such applications. 
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parameter that controls the approximation error: 

F,P)=F,,,(Q)+~(Y,,,) . 1.12 

If one requires that the approximation error be minimal one obtains an “optimal” jet algorithm 
([l&X] and Sec.7 below). It turns out to cot&ii features of jet algorithms currently in use. 
Then the ambiguities of the conventional jet algorithms are naturally interpreted as approxima- 
tion errors which it becomes possible to control (and, in principle, eliminate) if one systemati- 
cally employs the C-correlators 1.8 (and other C-continuous observables correctly constructed 
from C-cot-relators) to quantify the multijet structure. 

‘Linguistic” restrictions of Calgebra 1.13 
It should be emphasized that there are questions about multijet structure of an event that can 

not be- asked in the precise language of C-algebra For instance, it is incorrect to ask how many 
jets a given event has, and what their 4-momenta are.. Nevertheless, as was already mentioned, 
it is possible to define observables that are physical equivalents of the conventional n-jet frac- 
tions and of the mass spectra of “multijet substates”. Moreover, since jet algorithms retain the 
role of an approximation trick for computation of C-continuous observables, the concepts of 
“jets” and their “number” retain their value within the precision of such an approximation. Re- 
call e.g. quantum mechanics where it is, strictly speaking, forbidden to ask what was the exact 
trajectory of the electron. However, if the electron’s motion is quasiclassical, the question be- 
comes meaningful to the same degree to which the quasiclassical approxi.mation is acceptable. 

Plan of the paper 1.14 

The theory of jet counting described in this paper consists - lie any other theory - of 
four parts: “philosophy” (a critique of jet algorithms and a discussion of a special role of conti- 
nuity of observables, Sets. I-3); “theory” (elucidation of the precise mathematical nature of 
energy flow and the construction of C-algebra, Secs.4-6); “computational methods” (esp. the 
“optimal” jet clustering criterion, Sec. 7; also Sets. 12, 15 and 6.16); “applications” (a descrip- 
tion of various quantities of physical interest in the language of C-algebra, Sets. 8-13). 

In Sec.2 the ambiguities of the conventional jet algorithms are subjected to a scrutiny. It is 
then argued that instead of ambiguities one should talk about instabilities of the corresponding 
numerical procedures, and the instabiities are due to their discontinuity. We consider a simple 
one-dimensional example and demonstrate how a use of continuous weights instead of hard 
cuts suppresses statistical data errors. (This is one of the most important “philosophical” points 
of the present work.) Then we consider the geometry of discontinuities and the associated in- 
stability regions in the continuum of multiparticle tinal states. We investigate the potential nu- 
merical effects of instabiities taking into account specifics of QCD. A conclusion is that in- 
stabilities are a fundamental feature of any algorithm that attempts to describe a final state in 
terms of an integer number of jets. 

Once the role of continuity of observables for minimi& on of errors is understood, it should 
be. clarified which particular form of continuity is the right one. The point here is that in infi- 
nitely dimensional spaces such as the continuum of final states at high energies, many radically 
different continuities are possible. This issue is addressed in Sec.3. It is pointed out that a pre- 
requisite to defining continuity of obsetvables is a definition of a convergence (topology) in the 
space of finiie states. We show that the appropriate convergence is determined uniquely by the 
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structure of data errors of a particular class of measurement installations. 
In Sec.4 the general scenario is specialized to the case of multimodule calorimetric detec- 

tors, and the so-called C-convergence is described. This completes a precise mathematical in- 
terpretation for the physical notion of “energy flow” which is central in the discussion of jet- 
related measurements. in Sec.5 the observables possessing the corresponding property of C- 
continuity are described. They are shown to constitute an “algebra” (the C-algebra). The 
“basis” of the latter consists of the C-correlators. Other physically useful C-continuous observ- 
ables can be constructed using a few rules. In Sec.6 the C-correlators are discussed from the 
point of view of Quantum Field Theory. It is demonstrated that they fit naturally into the gen- 
eral framework of QFT. In particular, an alternative derivation of C-correlators is presented. 
The derivation starts with a QFT-compatible correlator-type observable and makes use of the 
condition of fragmentation invariance extended to take into account ftite energy and angular 
resolution of calorimeters in the spirit of the preceding discussion of the role of continuity. 
Prospects for theoretical studies and calculations of C-correlators are briefly discussed. 

Since C-correlators play such a central role in our theory, Sec.7 addresses the issue of their 
optimal computation from data. Fit of all, expansions in masses of soft particles are possible. 
Furthermore, a stability with respect to almost collinear fragmentations allows one to employ 
an approximation trick (“preclustering”) that is similar to conventional jet algorithms (cf. the 
discussion in Sec. 1.11). An optimal preclustering criterion is derived in a purely analytical 
fashion from the well-defined requirement of minimizing approximation errors. The new crite- 
rion is shown to possess fe?*:res of the popular jet definitions but is more general in that it al- 
lows a simultaneous clustering of more than 2 particles into one. 

Secs.8-13 are devoted to phenomenological applications, and we show how to express 
physics in the language of C-continuous observables (C-comelators and their derivatives). In 
Sec. 8 a special sequence of C-cot-relators is derived (the so-called jet discriminators J,) that 
are physically equivalent to the conventional n-jet fractions.’ The properties of the jet discrimi- 
nators are investigated in Sec.9. 

Sec. 10 introduces and studies properties of a simplest example of spectral discriminators. 
The latter are C-continuous observables for measuring mass spectra of multijet substates with- 
out identifying individual jets, which allows one to avoid instabilities of the conventional al- 
gorithms. It is demonstrated that a presence of isolated clusters of patticles results in the so- 
called E-spikes - &functional contributions to spectral discriminators. &spikes are a universal 
feature of spectral discriminators and, after averaging over all final states, result in enhance- 
mentS that signal presence of new particles. Sec. 11 defines more complex spectral diirimina- 
tors that allow one to better focus on multijet substates. Sec. 12 summarizes the algorithm of 
computation of spectral discriminators from data. Sec. 13 describes the options available in the 
formalism to enhance signabbackground ratio by taking into account a priori dynamical infor- 
mation. It also describes modifications needed for the case of hadronic collisions. 

Sec. 14 contains a summary and concluding remarks. The two appendices (Sets. 15 and 16) 
contain background information on abstract measures. 

HOW to read this paper 1.15 

The subject of jet-related measurements concerns both theorists and experimentalists (the 

‘ The special role of the jet discriminators is underscored by the profound fact of their connection with the Pla- 
tonic solids; see Sec. 8.17. 
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latter more than the former), and there are different obstacles that may make reading this paper 
difficult for different categories of readers. One is that the philosophy behind the new theory 
deviates rather considerably from the conventional attitude to jet counting. Moreover, the 
“philosophical” arguments are. mingled with a reasoning that uses unusual logical patterns of 
genelal topology (convergences and continuities) that seem to be unfamiliar to a majority of 
physicists (perhaps because they are so fundamental that are usually taken for granted). Tbis 
could not have been avoided - the essential uniqueness of the presented construction cannot 
be appreciated otherwise. 

Unfamiliar functional formalism of abstract measures etc. used to describe the mathematical 
nature of energy flow and C-continuous observables may also be difficult for the uninitiated. 
This could not have been avoided either: Tbe mathematical description of stability of data 
processing algorithms in calorimetric measurements with respect to errors i;; the language of a 
*-weak convergence in a space of linear function& is not an invented hypothesis; it is a 
straightfonvard codification of whut is.’ 

However, a data processing expert not seeking to understand the mathematical subtleties in 
complete detail but willing to give the new formalism a my in a realistic problem, may concen- 
trate on the discussion of the rote of continuity of observables in Sec.2.5. and the QFT deriva- 
tion of C-correlators in Sec.6.4. For practical purposes, one needs the definitions and notations 
of Sec.4 and the formulas of Sec.5 (discrete variants only) while the details of the reasoning of 
Sec.3 may be ignored. Then one can turn directly to the discussion of applications in Secs.l 
13. The issues of numerical work with spectral discrimirrators discussed in Secs.15 and 12 
cannot be skipped. 

The material of Sec.7, Secs.8-9. and Secs.lO-12 can be studied in any order. 
F&y. it should be noted that the validity of the prescription to regularize one’s cuts as a 

matter of routine (Sec.2.5) extends beyond the meaSuremeats in high energy physics. Similarly, 
Sets. 12 2nd 15 describe a rather universal scheme based on linear splines for computation of 
various distributions obtained from irregular “stochastic” approximations such as typically ob 
tained from a sample of events generated by a quantum process. The scheme is hardly more 
complex, but somewhat less sensitive to data errors, than the conventional bin-type algorithms. 

Numbering and cross references 1.16 

I hope the reader will find it convenient that Fig.10.24 is located between items 10.23 and 
10.25 - irrespective of what the latter are, equations or subsection headings. Sub- (and sub- 
sub-) section headings are treated rather like labels in the text (with a liberating effect that one 
no longer needs to conform to pedantic conventions, e.g., about whether or not a section allay 
be- split in the middle by a single subsection heading) and for that reason do not have a sepamtc 
numbering from equations, figures and tables - it is not clear what such a separate numbering 
might be good for besides a convenience of an uncomputerized typographer. 

’ If one needs a proof of this fact other than the arguments of the present paper one may note that the definition 
of calorimeuic~continuity underwent a considerable evolution [la]. 1171, [ 151 with the original version [la] 
rarher different in form from, but essentially equivalent to, the final one [ 151. 
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“Ambiguities” of jet finding algorithms 2 

The jet algorithms currently in use come in two flavors: cone-type and recombiion 
(alternatively called, respectively, clustering [lo] and successive combination [24]). The cone- 
type algorithms define jet as a group of particles that belong to a cone of certain angular radius 
[2], [25]. They involve a free parameter (the radius of jets R) and a minimization [2] or an it- 
erative procedure [25] to determine jet axes, as well as a rather arbitrary prescription to deal 
with overlapping cones. In the case of recombination algorithms’, the underlying idea was, ap- 
parently, to invert the hadronization. They also involve a free parameter (the so-called jet 
resolution parameter yCut, 0 c ycu, cc 1) and proceed in an iterative fashion. raking at each 
step two particles and deciding (using a criterion that involves yCut as a cut) whether to com- 
bine them into a jet or not. 

For the purposes of our discussion, the details of jet algorithms are less important than the 
structure of the results they yield. Such an algorithm is applied to a multiparticle state and 
computes its jet pattern (cf. 1.2). Note that the jet pattern contains an implicit dependence on 
the control parameter of the algorithm (y,,, or R). There is no criterion to fix the control pa- 
rameter; the conventional practice is to perform computations for an interval of its values. 
Note that the control parameter has a physical significance in the conventional schemes that 
becomes manifest when one studies mass spectra of substates consisting of a fvted number of 
jets. This is because the number of such substates and their invariant masses can be completely 
diierent for different values of the control parameter. 

Jet finding algorithms and precision measurements 2.1 

Once one has realized what were the context in which the conventional jet algorithms were 
invented and the implicit assumptions behind them, it is not longer self-evident that they should 
be an adequate tool for the needs of precision measurement applications. 

Theoretical aspects: jet algorithms vs. QFT 2.2 
Precision measurements imply a comparison with high-quality theoretical calculations. For 

systematic theoretical calculations to be possible (including various kinds of corrections). they 
should be performed within the forrnaliim of Quantum Field Theory. The first objection to jet 
finding algorithms is that they do not fit well into the QFT framework.” 

A practical manifestation of this circumstance is that jet algorithms are hard to study theo- 
retically: For instance, analytical calculations of theoretical predictions are impossible even in 
the simplest case of the cross section for ece- + 3 jets in the lowest order of perturbation 
theory, which is to be contrasted with the purely analytical next-next-to-leading order calcula- 
tions of the total cross section [31] made possible by the algorithms [32], 1331, [34] that ex- 

’ LUCIUS [14], JADE [26] and their derivatives Durham [27] and Geneva [ZS]; for a review and comparison we 
[IOHm, WI. 
’ This argument is sometimes underrated. Recall, however, that Qn is a very tightly knit constmction; ir 
combines quantum mechanics, special relativity, and the experimental fact that particle interactions occur via 
exchange of quanta; and it does so in a practically unique way - which is expressed most ciearly in the am- 
stmction of perturbative QFT in [30]. It thus summarizes a huge body of experimental knowledge about the 
Universe. Therefore, such a “purely theoretical” objection may not be dismissed lightly. 
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ploit the structure of multiloop Feynman diagrams - the structure predetermined by QFT - 
to the fullest extent, Moreover, a theoretical study of such algorithms seems to be rather in- 
volved (Sudakov resurnmations etc. [29]). Also, it is not clear how to approach the issue of 
power corrections that have been argued to be numerically important in jet physics [35]. 

On the other hand, one can notice that the ensemble of multihadron final states is a system 
with a varying number of particles. The appropriate theoretical language to describe such sys- 
tems is in terms of multipatticle correlators (see any systematic textbook on QFT, e.g. [36], or 
statistical mechanics, e.g. [37]). Next one notices that “jettiness” is but a special sort of geo- 
metrical correlations between particles’ momenta. Then one is driven towards a logical con- 
clusion that it should be possible to describe the multijet structure in terms of multiparticle cor- 
relators, which would provide a diit connection to the formalism of QFT. We will see that 
such a description is indeed possible. 

Instabilities of jet algorithms 2.3 

Let us turn now to the key idea behind jet algorithms, which is to reconstruct the pattern of 
underlying hard partons’ momenta by, in effect, inverting the hadronization. The first observa- 
tion is that the evolution of a bard parton state into hadrons is neither classical nor determinis- 
tic. Its inversion, therefore, is bound to be a mathematically ill-posed problem. This means that 
such an inversion may not be always stable with respect to small changes of input data.’ 

Instabiity of an algorithm means that there are large changes in the output when the input is 
changed a little. The simplest reason for that is a discontinuity of the algorithm with respect to 
input data. For instance, the number of jets (whatever algorithm is used to defme it) is an inte- 
ger-valued function of events, and such a function cannot be continuous in any non- 
pathological sense on a connected continuum, i.e. a continuum in which any two points can be 
connected by a continuous curve as is the case with multiparticle fti states where any such 
state can be continuously deformed into any other. In such a situation the maximal output error 
due to input errors is of order of the discontinuity - irrespective of the sire of the input errors 
(cf. Kg. 2.11 below). Although the sire of the region in the continuum of final states where the 
instability occurs does get smaller as the errors decrease so that the cumulative integral error 
also decreases, nevertheless the numerical estimates of Sec.2.5 demonstrate that a well- 
behaved continuous algorithm may have a considerable advantage over (and is never worse 
than) discontinuous algorithms in this respect. 

Another form of instabiity of jet algorithms - also connected with their discontinuity - 
affects jets’ 4-momenta. Recall that masses of particles that decay into jets are reconstructed 
from the invariant masses of the corresponding multijet substates. Now a jet algorithm enforces 
a representation of the final state by a few jets’ 4-momenta in spite of the jets’ non-zero angu- 
lar width and overlaps. In the latter case different jet algorithms will never assign particles to 
jets in exactly the same way, and the resulting jet pattern will be different. Accordingly, invari- 
ant masses of, say, pairs of jets will be measured with an uncertainty due to the ambiguity of jet 
definition. This phenomenon is behind the fact already mentioned that the error of the top mass 

i A non-iterative - and presumably more stable - version of recombination algorithms is described in [38]. 
However, its clustering criterion is rather ad hoc. and it also does not eliminate the instability w.r.t. jets’ 4- 
momenta that leads to ambiguities in mass measurements. It should best be considered as a shell in which vari- 
ous clustering criteria can be used (cf. the analytical criterion for n --f I clustering of the “optimal” algorithm 
desxibed in Sec.7). 



determination at the LHC is expected to be dominated by uncertainties due to ambiguities of 
jet algorithms [9]. 

The above effect would take place even in the absence of data errors. Moreover. since (non- 
negligible) data errors are always present, they would influence the results of different algo- 
rithms in a different way (sometimes causing, say, a recombination algorithm to combine a pair 
of particles when it would not do so in the absence of data errors, or vice versa), and the re- 
sulting ambiguity increases. In fact, there takes place an enhancement of data errors. 

To understand this point recall that some sort of optimization (maximization, minimization) 
procedure is explicit in some algorithms (e.g. the scheme described in [2]), and the iterative 
procedures of the popular algorithms of both recombination and cone type, may also be for- 
mally thought of as implementing some such implicit optimization. Therefore, consider the 
following situation as a toy model’. Suppose one deals with a function f(x) of a real argument 
x, represented by a collection of pairs [f(xi),xi] both elements of which are known with er- 
rors. Suppose a theory predicts that the function is a &function smeared by unknown “higher- 
order corrections”, but one nevertheless expects that the function retains a form of a peak, and 
the shape of the function is controlled by a parameter A which one wishes to determine (this is 
analogous to determining some Standard Model parameter from hadronic final states). Then 
one may attempt to extract A by finding the position of the maximum of the function. 

---v--t-- ---A --A-- 
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Further suppose that one does so in a straightforward manner - e.g. by choosing one value of 
the argument that gives a maximal function value. (‘Ihis is similar to trying to represent a final 
state by a finite number of jets via some iterative or minimization procedure.) Then the result- 
ing error is determined not only by data erron but is also enhanced by the width of the peak 
near its top within the margin of data errors (cf. fig.2.4 where the crosses are the measured 
points [j(xj),xi] ‘th WI error bars and the fat horizontal double arrow represents the interval of 
uncertainty in the position of the maximum). The obtained value of A inevitably inherits the en- 
hanced error. 

It is clear that the uncertainty is a result of one’s using a too crude representation for 
f(x, A) with a single &peak. Now suppose one performs some more calculations and com- 
putes not just one number (the position of the peak) but an entire shape, and fits the theoretical 
curve against experimental data. Then the above enhancement of errors would not occur be- 
ease the shape w3ulhd be &id better in plan ti; t!~ slopes. Correspocdingly, the deteamina- 
tion of A would be more precise. 

The above model illustrates the essential mechanism of how the instabilities of jet algorithms 

’ motivated by the comparison in Sec.1 1.25 of our spectral discriminators with the conventional procedures. 



are avoided when one studies mass spectra of multijet substates using spectral discriminators of 
SecslO-11. 

Discontinuities and data errors 2.5 

Let us study numerical effects of d&continuities on the integral error of the result. Tbe 
mathematical mechanism considered here is very general and is not specific to jet physics. For 
clarity, we consider a simple example with a I-dimensional continuum of tinal states but the re- 
sulting estimate remains valid in a general situation. 

A simple 1 -dimensional model 2.6 

One deals with a continuum of final states P. We take each P to be a point from the interval 
[O,l]. (P can be regarded as a parameter with respect to which a cut is being imposed on a 
sample of events. A more realistic description of hadronic tinal states is given in Sec.4.) The 
events are generated according to the probability distribution x(P) (determined by the S- 
matrix). Its form is controlled by the parameters one usually wants to extract from experimen- 
tal data. while various physical phenomena manifest themselves through its qualitative behavior 
(bumps etc.). 

There are two typical examples of such phenomena: (i) Virtual production of a particle 
which is manifested via an enhancement of the probability distribution x(P), say, near P - 1 
but not near P - 0. (ii) A dynamical mechanism of the underlying theory that, say, suppresses 
the production of events near P - 1. (For instance, P - 0 could correspond !i?‘Z-jet events 
while the region P - I, to 3-jet events.) Jn either case. the events P - 1 correspond to a physi- 
cal “feature” one wishes to quantify. The conventional way of describing such a feature is in 
terms of a “region” in phase space. So one introduces a cut in a more or less arbitrary fashion 
(say, P = 3) to describe the region, and counts the fraction of events that fall withii it. But the 
position of the cut is ill-defined in either case - in the first example, because the virtual parti- 
cle has a finite width; in the second example, because any 3-jet event can be continuously de- 
formed into a 2-jet one and there is no unambiguous criterion to separate 2-jet events from 3- 
jet ones. It is clear, therefore, that a hard cut does not correspond to any physical reality - 
which is manifested via the ambiguity of its placement. 

We have come to an important point. The above argument offers a physical reason for why a 
continuous weight varying between 0 at P = 0 and 1 at P = 1 should be a better tool to quan- 
tify that feature than a hard cut. Such a weight can be thought of as representing the degree to 
which the final state resembles those that exhibit the feature most clearly’ - the “weight” of 
the feature carried by the final state.” If one computes and adds up the values of the weight for 
all events (normalizing by the total number of events) then the result represents the integral 
“weight” of the physical feature one studies in a given sample of events. 

Of course there is an ambiguity of choosing a weight. But it is often possible to invoke addi- 
tional considerations to reduce the ambiguity to a minimum. Such considerations can be theo- 
retical - cf. the construction of jet discriminators in Sec.8 where the weight is built of 
“natmaY scalar products analogous to +h from wXch ti elements are buih. Ck such 
considerations could be empirical - one could e.g. choose a linear “regulariration” of the 

i or those front which it differs most clearly. 
’ This interpretation was influenced by a “probabilistic” interpretation of jet discriminators by F. Dydak 



weight to minim& effects of data errors etc. (cf. the analysis of errors below and Sec.2.21; 
also recall the fact that the control parameters of jet algorithms are chosen so that the distor- 
tions of mass spectra due to hadronimtion were minimal). 

Let us return to the example. A quantum observable yields a number for a given reaction. It 
is defined by specifying a function that returns a number F(P) for each final state P. Then the 
value of the observable on the statistical ensemble of final states is the mean value 

(F)= j dPx(P)F(P). 2.7 

Choosing F(P) to take values 1 and 0 within and outside the chosen region of phase space is 
equivalent to counting the fraction of events that fall into the region described by a hard cut. 

The case of a continuous weight discussed above corresponds to F(P) that is continuous, 
bounded (which assumption does not incur much loss of physical generality), and is such that 
0 2 F(P) 5 1 (which can be always assumed). 

From the point of view of numerical mathematics (recall e.g. various schemes of numerical 
integration), it is perfectly obvious that different properties of continuity should result in a dif- 
ferent numerical sensitivity of the two schemes to errors and approximations. 

Taking into account measurement errors 2.8 
In practice, the ideal formula 2.7 is distorted in several ways (e.g. the integration is replaced 

with a summati 02). But here we are interested only in the data errors. The latter can be taken 
into account as tOllows. For each ideal final state P, the measurement device “sees” another fi- 
nal state P distorted by data errors. The state p is seen with the probability $ @.P), where E 
describes the error intervals and is determined by the detector hardware. The same data proc- 
essing algorithm F is then applied to p, and one obtains the following result instead of 2.7: 

(F),, =ljdPdpn(P)h, (F,P) F(p) +dPr(P) FE(P), 2.9 

where 

~~(P)=IdPh,(~,P)xF(ij). 2.10 

It is natural to assume that the measurement errors are distributed continuously, then J34.2.10 
defines a timction that is continuous everywhere -even if F has discontinuities. Fig.2.11 illus- 
trates the difference between how FE(P) fluctuates around F(P) in the cases when the latter 
represents a hard cut and a continuous weight. 

2.11 

From Fig.2.11 one sees that however small E, the fluctuations of the values of F around a dis- 
continuity are of the same order as the discontinuity itself. Therefore, one can talk about an 
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instability region of the observable with respect to data errors around the points where the 
discontinuity occurs. In such instability regions small data errors cause the values of the ob- 
servable to fluctuate within an interval that does not vanish as E + 0. 

The qualitative difference of the two pictures 2.11 translates into a difference between how 
the measurement errors from many events accumulate when the integration is performed. The 
key point here is that measurement errors for different events are independent, so it is the cor- 
responding 0’ that are added rather than d (should the latter be true, the discontinuity would 
have played no role). As a result, the integral statistical error is quite different in the two casea. 

(It may be pointed out here that the notion of “continuity” is unambiguous only in our simple 
one-dimensional example. Mining an appropriate continuity in the realistic case of multihad- 
ron final states is less straightforward; cf. Sec.3.10.) 

Integral error for a hard cut 2.12 
Suppose one decides to count the number of the events above the cut. The exact result is 

given by the integral 

t dWP)y,ardP), 

where the weight whard (P) corresponds to the hard cut and is 1 or 0 depending on whether P 
is above the cut or not. 

We neglect the statistical fluctuations of 5.: density of generated events but assume that 
their position within [O,l] is measured with an error of order O(E). For simplicity suppose 
x(P) - const, so that the generated events are distributed more or less uniformly. Then the 
measurement errors for events that occm close to the cut (their fraction is O(E)) will induce 
fluctuations of order O(1) for the value of w hard(P) because of the discontinuity. Then the in- 
duced variance for 2.13 is 

c&& =cJ(E)x[o(l)]* =0(E). 2.14 

Integral error for continuous weight 2.15 

Now suppose one quantifies the same physical feature using a continuous weight 
(= “regularized cut”), e.g. one that linearly interpolates between 0 and 1 within a subinterval of 
length r: 

I 
1, forP-112>r/2, 

w,,(P) = y+;, for -rl2<P-1/2<r/2. 

0, forP-l/2<-r/2. 

2.16 

(d dW’)w,gP). 
We take r > E ; otherwise the situation is equivalent to the hard cut. 

The integral error for 2.17 is induced by events whose weight is computed with erron due 
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to errors in their position on the horizontal axis. The fraction of such events is O(r). The vari- 
ance of the value of wreg for each such event is 

[o(E)+]2 =0(s). 

Since measurement errors for different events are independent, the total variance for 2.17 is 
estimated by Eq.2.18 times the fraction of such events, O(r), i.e. 

For r = O(E) , this degenerates into 2.14, as expected. 
The net effect is that the resulting emor interval in the regularized case is suppressed as 

compared with the hard cut case by 

I]. 2.20 

Comparison and discussion 2.21 

(i) If the ambiguity in delining the physical feature is larger than the measurement errors then 
it is generally advantageous to quantify that feature using a continuous weight instead of a hard 
cut. Of course, both measurements and theoretical calculations should be done with the same. 
weights. 

(ii) Note that one may choose the position of the cut so as to optimize the s&&background 
ratio. With a regularized cut of the above type, one has an extra parameter with respect to 
which to optimize. In the worst case the optimum would be reached for the hard cut (r = 0). 
but it is clear that such situations are exceptional. This means that with a regularized cut one is 
never really at a disadvantage as compared with a hard cut as far as the resulting errors are 
concerned. The simplest prescription is to make the weight linearly interpolate between 0 and 1 
over the interval of ‘uncertainty’ of cut’s placement; the bounds of such an interval, presuma- 
bly, correspond to some physical reasons why one would not like to place the cut above and 
below certain points. The exact size of the interval is usually not important but it should not be 
less than the size of errors. 
(iii) Strictly speaking, the above suppression of errors is due to not just simple continuity but a 
somewhat stronger regularity. In our example it was existence of a bounded (even if discon- 
tinuous) fmt derivative. A Htilder’s condition would also be sufficient as well as some other 
types of regularity. In practice such a stronger regularity is usually ensured automatically (if 
one does not aim to construct a counterexample). On the other hand, in more complex cases 
there are many continuities possible, each one determining the corresponding differentiability 
etc. The real difficulty is to choose the conect form of continuity. This is why in subsequent 
sections we will be talking only about continuity without mentioning differentiability etc. 
(iv) It is easy to see that the suppression factor 2.20 for integral errors that is induced by a 
regularization remains operative in a general case (not necessarily one-dimensional). It is suffL 
cient to interpret E as the fraction of events that fall witbin the instability region of the hard cut 
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and r, as the fraction of events that fall within the interpolation region of the regularized cut 
provided the variation of the weight in the region is more or less uniform. 
(v) Take into account a virtually negligible additional computational cost of implementing a 
regularized cut. Then it may be suggested that one should readarize one’s cuts as a mater of 
roun’ne - unless the computational overhead proves to be prohibitive or other sources of er- 
rors clearly dominate. This conclusion remains valid irrespective of the physical nature of the 
problem. 

Instability regions of jet algorithms 2.22 

The above toy model ignored two effects: the geometry of cuts in a multidimensional case 
and the shape of the probability distribution x(P). The examples presented below - although 
not constituting a proof - indicate that in the case of QCD the two effects seem to conspire in 
an unfavorable fashion. We consider the two aspects in mm. 

Geometry of instability regions in the continuum of final states 2.23 
The geometry of the cut plays a role in the enhancement of errors because the more compact 

the boundary corresponding to the cut, the less its volume (for a fixed magnitude of data er- 
rors), and the less the error due to instabilities. Unfortunately, the situation with the boundaries 
between n-jet regions for different n seems to be quite opposite. A few examples will illustrate 
this point. 

2.24 

A jet finding algorithm splits the continuum of final states into “n-jet regions” (cf. Fig.2.24). 
Consider a l-jet state Pl that consists of one particle with the total energy E going in the di- 

rection 0 = 0. Also consider a continuous family of final states P,,, , each consisting of n par- 
ticles carrying equal shares of the total energy E and going in the directions described by 
cpi=(i-I)?, Bi=Oforalli.AsOvaries,Pe, describes a continuous curve in the contin- 
uum (P}. 

Let n = 2. For 0 = 0, P,,, is equivalent to the l-jet state P,. For 0 = $ one has two pure 
jets. Obviously, there is an intermediate value 0 = 0’ when the curve P,, crosses the bound- 

ary between l- and 2-jet regions. Because of measurement errors there is an interval of 0 
around 0’ where the jet algorithm cannot count jets stably - a region of instability that sepa- 
rates 1- and 2-jet regions (cf. Fig. 2.24). The thickness of this region is determined by experi- 
mental euars and the jet tinding algorithm. (It, it-~+ lo larger in the case of itemti~ rccombina- 
tions.) 

Let n = 3. For 8 = 0, P,*, is again equivalent to the l-jet state P, while for 0 = $ one 
now has three pure jets. But what happens in between? It is not difficult to understand that 
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even in the absence of experimental errors, there is an interval 0’ < 0 < 0” where the algo- 
rithm would see 2 jets. But which of the three particles are combined into a jet - and there- 
fore the resulting 4-momenta - depends on the order in which the algorithm treats the parti- 
cles and minor programming details. It is also clear that to regard the states Pe3 for 
0’ < 0 < 0” as having two jets does not make much sense. Experimental errors make the 
situation worse. Thus there exists an instability region that is adjacent simultaneously to I-, 2- 
and 3-jet regions, in which the conventional jet counting is rather meaningless. This is also re- 
flected in the fact that even if one forces the algorithm to “count” jets, the resulting jets’ 4- 
momenta cannot be determined in a stable meaningful way. Such an instability region is cross 
hatched in Fig.2.24. 

Similar instability regions emerge for higher II. Consider the contiguration shownin Fig.2.25: 

2.25 

As 8 varies from 0 to f the 2-jet region directly connects to the 4-jet region (unlike the con- 
nection between l-jet and 3-jet regions considered above). However, the connection point is 
also adjacent to the 3-jet region so that there is an instability region around that point in which 
the number of jets fluctuates between 2 and 4. A similar direct connection exists e.g. between 
3-jet and 6-jet regions. 

So, the geometry of n-jet regions and boundaries between them as well as the instability re- 
gions, become rather intricate: The n-particle subspace of {P] consists of interlaced m-jet re- 
gions for all m I n, with many boundary points adjacent to more than two such regions. 

Effects of the shape of x(P) 2.26 

Consider the n-jet fractions defined using any conventional jet finding algorithm: 

@jets = I dP n(P) f, (P) , 2.27 

where f”(P) = 0(P has n jets) is 1 or 0 depending on whether or not the condition in the ar- 
gument of 6 is satisfied. In particular, 

Cn=,,2.., tJ”jfJS = 1 . 

The number of jets is determined incorrectly for events from instability regions, which results 
in a redistribution of events between n-jet fractions for different n, i.e. a smearing between 
them. The smearing affects not only pairs of adjacent n-jet fractions, say 2- and 3-jet fractions, 
but also 2- and 4-jet ones (cf. Fig.2.25), etc. 

Furthermore, recall that within QCD radiation of each additional parton involves a factor of 
as so that very roughly, 

on+ljes = O(as) x #jet, . 

This means that the smearing affects quantities that differ by an order of magnitude: 1% of 2- 
jet events incorrectly identified as having 3 jets means an O(lO%) error in the 3-jet fraction 
which may ‘affect the determination of cLs from o(e+e- + 3 jets). There is also a smearing 



between, say, o3 jets and cr6 jets in which case the two quantities differ by O(a$ -O(lOOO) 
although it is hard to estimate the contribution of the corresponding instability region. 

Another QCD feature is that the probability of additional parton radiation is enhanced in 
collinear regions by collinear singularities. Therefore radiation of an additional jet is enhanced 
in con@urations where. it is closer to, and harder to differentiate from, the other jets. 

It is clear that the smearing affects most significantly the n-jet fractions for higher n. The 
obvious geometric reason is that the surface of the unit sphere remains 4x so that angular dis- 
tances between jets must decrease while jets on average tend to be softer (less energy per jet), 
therefore, wider. On the other hand, the collinear singularities make it more likely that for. a 
larger number of jets at least one pair of jets has a smaller angular distance. 

Numerical importance of such effects in a realistic situation has already been discussed [9]. 

Summan/ 2.30 

(i) Mathematically, instead of “ambiguities” of jet algorithms one should talk about their in- 
stabilities resulting from their discontinuity. 
(ii) The discontinuity of jet finding algorithms manifests itself through various instabilities. 
One is the enhancement (as compared to the case of continuous weights) of data errors near 
the boundaries separating %gions” corresponding to events with different jet numbers. This 
results in a smearin g between the regions corresponding to tinal states with different numbers 
of jets. Its numerical effect is enhanced by the intricate geometry of the n-jet regions in the 
continuum of all tinal states and by the specific form of the probabthty distribution in QCD. It 
can be eliminated neither by varying the jet resolution parameter ye,,, nor by increasing statis- 
tics (for a given precision of detectors). It is more important fcr smaller ycut, lower energies 
and larger numbers of jets. Another manifestation of instabilities is a systematic error in de- 
termining jets’ 4-momenta. In the latter case the numerical effects of instabilities are expected 
to remain significant in physical problems of much interest even at the energies of the LHC [9]. 
(iii) The enhancement of statistical measurement errors by discontinuities can be eliminated by 
using continuous weights (regularized cuts) instead of hard cuts in order to quantify the physi- 
cal features one studies. Moreover, the use of continuous weights here conforms better to the 
physical reality of absence of boundaries between events with a different number ofjets. 
(iv) It can be suggested that in high precisionflow signal situations one should regularize cuts 
as a matter of routine - irrespective of the physical nature of the problem (jets or not; see 
Sec.2.21). 
(v) The term “ambiguities” used in connection with the problems of jet algorithms, conveys a 
wrong impression that the ambiguities may perhaps be fixed by invoking additional considera- 
tions. It should be emphasized that this is not possible because one actually deals with insta- 
bilities that are due to discontinuities that cannot be eliminated as a matter of principle: A 
mapping of any connected continuum (such as the space of final states (P}) into integer nurn- 
bets (such as classification of events according to their “number of jets”) cannot be continuous 
in any non-pathological sense. The disccntinuity. therefore, is a fundamental intrinsic property 
of any jet finding algorithm. It is impossible to eliminate the effects of “ambiguities” of such al- 
gorithms without abandoning them altogether as a primary data processing tool in jet-related 
measurements. 
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Mathematics of measurements and continuity 3 

Everything that happens to experimental data prior to the moment when they are confronted 
with theoretical numbers constitutes a physical measurement. In high energy physics this in- 
volves two stages: 
l Fmt one records the raw data from a detector installation. In the context of precision 
measurement problems, the data thus obtained constitute a result of a physically meaningful 
measurement to no higher degree than, say, a digital photograph used as intermediate represen- 
tation to measure the length of a stick.’ 
l At the second stage a reduction of information is performed, i.e. extraction of a physical 
“meaning” from the raw data. This involves a rather complex manipulation of numbers with a 
computer.” 

The above definition of physical measurement is an expression of an attitude which is an ap- 
propriate one for the problems of precision measurement class: It makes one focus on what is 
the primary concern of any measurement, namely, the precision of the final results. 

Data processing and errors 3.1 

The problem, therefore, boii down to studying how the properties of the algorithms ern- 
ployed for reduction of information interact with data errors etc.“’ As follows from the discus- 
sion of a one-dimensional example in Sec.2.5. the integral output errors for a quantum observ- 
able are minim&d if the function that defines the observable is chosen sufficiently regular - 
as a minimum, continuous”. 

The crux of the matter is that continuity is a simple notion only for numeric functions of a 
finite number of numeric arguments. But the number of particles in final states in high energy 
physics experiments cannot be meaningfully restricted (the actual numbers are O(loO)), so the 
continuum of multihadron final states should be regarded as infinitely dimensional. In an infi- 
nitezy dimensional space many radically nonequivalent continuities are possible (see any text- 
book on functional analysis, e.g. [40], 1411). For instance, consider the infinitely dimensional 
space 0: ordinary functions; the Fourier series for an ordinary function converges to it in the I,’ 
topology but need not converge to anything at all in the uniform sense (the so-called C? topol- 
ogy; cf. Sec. 15). An appropriate convergence in each case is determined by a particular appli- 
cation and cannot be. postulated a priori. 

So, the problem is to choose an appropriate continuity for functions defined on final states 
- a continuity that would ensure a minimization of integral errors in accordance with the 
conclusions of Sec.2.21. Obviously, the structure of data errOrs of a particular class of detec- 
tors should play a crucial role here. 

‘Of coutsc, this dcpeods on the concrete problem: if one aims at modeling data in full detail (as is tbe case. 
e.g., witb weather forecasts) then such digitized data are immediately compared with theoretical predictions. 
and are to be regarded as the fmal results of measurement. 
ii Inclusion of a mathematical algorithm into measming system is a familiar coxept e.g.. in spcct~oscopy and 
ether related fields; cf. [39]. 
Iy Although we are speaking about dataerrors, similar arguments apply to other sources of uncertainties such as 
unknown corrections (logatitbmic and power) in theoretical studies as well as minor variations of program im- 
plementations.- 
n More stringent types of regularity -differentiability etc. - require that a continuity be defined tirst. 
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Consider the difference between the ideal expression of an observable, Eq.2.7, and its ver- 
sion that takes into account measurement errors, EZq.2.9 (we consider here the most general 
case making no assumptions on the dimensional@ of the continuum of P): 

3.2 

The integration over the events P with the weight rt can be simply interpreted as a summation 
over a sample of events. Then the fitst term in the square brackets can be thought of as the 
value of the observable F for the event P distorted by the detector errors (E describes theii 
magnitude). To make things more transparent consider the following analogue of 3.2: 

3.3 

where PC is the distorted event. We have seen in Sec.2.5 that the integral error is minim&d if 
the fluctuations of the values of F induced by errors in the argument vanish together with the 
magnitude of errors, which can be expressed as follows: 

[W,)-RR] Ed 90 for any P. 

This is nothing but a form of continuity, and it will be discussed later on in more detail. 

A mathematical subtlety 3.5 

Strictly speaking one should require that F satisfy a somewhat more stringent condition: 

mp=[FP’,)-FP)] 
E+O 

FO. 3.6 

If P were real numbers (or tinite dimensional vectors) then Eq. 3.4 would simply describe con- 
tinuity of the function while Eq.3.6, its uniform continuity. The latter does not, in general, fol- 
low automatically from the former - but it does if the region in which the function is defined 
is compact (e.g. a sphere). In finite dimensional situations compactness of a region is equiva- 
lent to its being bounded and closed :42]. In infinitely dimensional spaces the issues of com- 
pactness and uniform continuity are more tricky. 

A mathematician will note that the required compactness in our case follows from the stan- 
dard Banach-Alaoglu theorem (see e.g. [41]). Indeed, we will see (Sec.4) that P in our case 
are interpreted as measures on the unit sphere while the continuity expressed by 3.4 will be 
seen to be the continuity with respect to the *-weak topology in the space of P. Furthermore, 
the integral of any P over the entire unit sphere with unit weight is limited by a constant (the 
total energy of the colliding particles). According to the Banach-Alaoglu theorem the set of 
such P is compact. Then Eq.3.4 automatically implies 3.6. 

On the other hand, a reader to whom *-weak topologies and the Banach-Alaoglu theorem 
mean nothing need not worry much about the reasoning in the preceding paragraph. Indeed, in 
the final respect our objective is to find a class of observables that could serve as an alternative 
to jet algorithms. The condition 3.4 is restrictive enough for that purpose - it will allow us in 
Sec.5 to derive the so-called C-correlators that: form a rather narrow class; allow one to ex- 
press practically any physical feature; allow an alternative derivation (Sec.6). 

Whether or not the resulting formalism can become a viable alternative to jet algorithms in 
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the high energy physics research, is a complex issue that can only be decided by practice. From 
such a point of view a rigorous study of mathematical subtleties becomes rather irrelevant (at 
least at this point of time) and we simply accept 3.4 as a basic requirement which our observ- 
ables should satisfy. 

Data errors and convergence 3.7 

Recall that to define continuity of a function one first has to define convergence of its argu- 
ments’. In our case, the arguments are final states P that form a space that we denote as [P). 
Suppose we have defined which sequences of fmal states P,, E {P] are considered as 
“convergent”. Then the observable F(P) is continuous (with respect to the specified conver- 
gence in (P)) if its values F(P,,) form a convergent numerical sequence for any sequence P, 

that converges in the specified sense. 

Reminder: length and real numbers 3.8 

It may be helpful to begin the discussion of connection of measurement devices. errors, and 
convergences by briefly reviewing the issue in the simple case of length measurements. 

Recall the formal construction of real numbers. One begins with rational numbers and de- 
fines the so-called Cauchy sequences of rational numbers that have the following property: If 
rn is any such sequence then for any N one has 1~ - ‘,,-I c h for all sufficiently large 
n’ and n”. (The 1.h.s. of the criterion is the usual distance between two numbers, i.e. the 
modulus of difference.) Such sequences are declared to be ‘$nvergent” (with respect to the 
chosen criterion). The real numbers are then defined as ideal” objects that correspond to such 
sequences: one says that each Cauchy sequence converge5 to a real number. Two different 
convergent sequences on and b, are said to be equivalent and represent the same real number 
if the sequence obtained by combining the terms of the two, al,bl,a2,~,a3.~..., is again a 
convergent sequence. The construction is called “completion” of the space of rational numbers 
with respect to the defmed convergence. Arithmetic operations are extended to the ideal num- 
bers via continuity. 

One can see that the construction of real numbers is cor.nected with length measurements as 
follows.“’ Imagine a stick whose length L one wants to measure. One takes a ruler graduated 
every l/N, part of, say, meter. One aligns its zero end with one end of the stick and finds the 
two adjacent marks on the ruler between which the other end happens to be. One counts the 
marks and obtains a pair of rational numbers r,‘, r,“. One chooses either of the two or any ra- 
tional number in between (depending on a convention). Denote the chosen number as rl. One 
says that r, represents L within the precision E, = l/N, = r,“- ri. Next one takes a more precise 
mler, i.e. graduated every 1/N2-th part of the meter with N, > N, and repeats the procedure. 
One obtains another interval r;, r$ and a rational number r. which is said to represent L within 

iThutandard mathematical tetmmdetmte what we call convergence is “topology” [431. Note that experimen- 
+ists speak about “topology of an event” (= geomcay of the event) which is a completely different thing. 
’ Ideal nature of real numbers is to be contrasted with the fact that rational numbers exist in a very tangible 
$m as finite sequences of digits on paper or bits in computer memory. 
u One would normally discuss such measurements while taking for granted that length is represented by a real 
number. We wish to make no such assumption, which explains a somewhat pedantic exposition. 
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precision Ed = l/N,, etc. It is an experimental (sic!) fact that all the intervals r,’ , ri overlap.’ 
This is reflected in that whatever the convention for choosing r,, , all such sequences happen to 
be convergent and equivalent to one another in the sense of the preceding paragraph. 

This should be compared with the construction of the so-called p-adic numbers (for each 
prime p there exists a continuum of such numbers). The latter arc also defined as ideal numbers 
represented as “limits” of Cauchy sequences of rational numbers except for one difference: the 
“distance” - and therefore the notion of convergence - is chosen differently from the case of 
real numbers (for detaiIs see [44]). Despite the difference, the p-adic numbers share a lot of 
properties with the real numbers, e.g. arithmetic operations remain continuous in the contin- 
uum of p-adic numbers. The p-adic numbers are by no means a pathology: They emerged natu- 
rally in connection with certain fundamental problems of the theory of numbers; the latter has 
vital applications to cryptography and digital signature systems on which modem electronic 
banking is increasingly dependent [45]. 

Lastly, it is only rational numbers that are actually used in practice, and one might wonder 
whether choosing a particular idealization makes any difference. In particular, what makes us 
stick to the real numbers in theoretical constructions? The answer should by now be obvious: it 
is the fact that their continuity properties directly formalize the structure of measurement er- 
rors of the concrete measurement procedures that prove to be useful in a particular kind of 
applications. Similarly, we will see that there is just one convergence in the space of linal 
states/energy flows that formalizes the structure of errors of calorimetric detectors. 

convergence in terms of resolution of measurement device :. r “3 

In what follows it will be useful to reformulate the definition of Cauchy sequences in terms 
of measurement devices in such a way as to make it easily genemlizeable to more complex 
situations. The new definition is as follows: A sequence of measurements f, is convergent in 
the sense determined by measurement devices (e.g. rulers) if whatever the resolution E of a 
ruler. 1, cannot be distinguished using that ruler for all sufticiently large n. The equivalence to 
thx old definition is easily verified. 

The definition remains valid after the completion that results in the space of ideal lengths/real 
numbers: A sequence of lengths/real numbers 1, converges if whatever the resolution E of the 
ruler, 1, cannot be distinguished using that ruler for all su!Xciently large n. 

Complex measurement installations 3.10 

In general, a complex measurement installation - not necessarily related to high energy 
physics - consists of more than one elementary detector module each yielding a (rational) 
number. The total number of modules need not be tixed, i.e. it may vary depending on a par- 
ticular installation. But it is always finite. 

An example is a typical high-energy detector consisting of many detector modules. Each 
measurement from such an installation (corresponding to one event) yields a data record - a 
finite array of numbers organized in a certain way. Denote such a data record as P. Consider a 
particular class C of me asuremznt installations (e.g. calorimetric detectors). The detector rec- 
ords P from alI possible installations of the class C can be regarded as elements of a mathe- 

’ The complication of statistical errors is ignored for simplicity. 



matical space (which we denoted as (P}). The structure of installations of the class C reflected 
in the structure of errors of the records P determines a convergence in [P) 

Definition of convergence 3.11 

Ftrst define the convergence in {P) following the pattern of Sec.3.9: A sequence of data re- 
cords P,, is called convergenr in the sense of C if whatever detector installation from this class 
is used, the elements of the sequence cannot be distinguished by that installation for all s&i- 
ciently large n. (We will also use the term C-convergent and C-convergence in such cases.) 

Let us now take into account that the number of elementary detector modules in any such 
instalktion is finite. Denote the modules of the installation as n+. Consider any one such mod- 
ule 9; let q(P,,) be the number it measured for P,, . The module q has a finite precision. and 
the numbers mt(P,) become indistinguishable within the precision of no starting with, say, 
n = Ni . Then the entire instaktion (the collection of all n+) wilI not “see” the difference be- 
tween P, starting from n = maxi Ni. One can see that because the number of elementary 
modules is always finite, the convergence in the sense of C may be equivalently defined using 
only elementary modules: One says that the sequence P, converges in the sense of C if for any 
elementary module m from measurement installations from the class C the numbers m(P,) be- 
come indiitinguishable for all sufficiently large n - whatever the precision of m. 

Fmally, one can reformulate the definition in such a way that the precision of modules is not 
mentioned: The sequence PTz .-onverges in the sense of C if for any elemennuy module m there 
exists the limit 

lim m(P,)<+. 
?Z+ 

This is the definition we adopt in what follows. 
It remains to note that the above definition is completely genernl, for the very nature of 

measurement is such that only a ftite number of “detector modules” can be involved in any 
instance of measurement process. 

A concretization of this scheme to the case of multihadron final states and calorimetric de- 
tectors together with precise descriptions of P, m, {P] and the resulting “C-convergence” is 
presented in Sec.4. 

Convergence in terms of open neighborhoods 3.13 

A mathematician may note that the above scheme is easily transformed into the usual 
mathematical definition of a topology. Indeed, the “C-topology” in the space [P) that is 
equivalent to the above C-convergence is exactly the weakest topology in which all numeric 
functions m(P) corresponding to ail allowed elementary detectors are continuous. Note also 
that in applications {P} is always separable. In the concrete situation considered below in 
Sec. 4, (P) consists of linear functionals on a linear space whose elements correspond to ele- 
mentary &tector modules 91. Then t&e C-topology is a variant of the well-known *-weak to- 
pology [41]. In our special case we deal with a linear space of measures, and the convergence 
is also known as weak convergence of measures [46]. 



Summary 3.14 

(i) Integral errors of data processing in complex measurements - the errors that are due to 
measurement errors in the mw data - am minimized if one uses suffkiently regular continuous 
observables. 
(ii) To define the required continuity of observables one must specify a notion of convergence 
in the continuum of mathematical images of physical objects one deals with. 
(iii) The required convergence is determined by the structure of measurement errors in the raw 
data, eventually, by the “kinematic” structure of the measurement device. 
(iv) A natural completion construction results in an ideal representation of the physical objects 
one measures as some sort of ideal mathematical objects (e.g. “length” as a real number). 
(v) The notion of convergence that is specific for multimodule detectors can be characterized 
in terms of elementary detector modules (Eq.3.12). (The resulting convergence happens to be 
a variant of the so-called *-weak topologies that are well-known in mathematics.) 

The plan of our construction is now clear: First, we should precisely describe the objects we 
wish to measure (i.e. events/muhiparticle states/energy flows) as well as the elementary calo- 
rimetric detector modules. Then we will be in a position to describe the convergence deter- 
mined by the calorimetric detectors following the above scheme. This will give us a complete 
formalization of what “energy flow” is from mathematicoj :75et of view. 
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Multiparticle states, energy flows and calorimetric detectors 4 

In this section we apply the scenario described in the preceding section to the special case of 
multimodule calorimeaic detectors in order to arrive at a precise mathematical description of 
energy flow including the convergence defined by such detectors. 

As was explained e.g. in [24], there are hvo different geometric frameworks in which jets are 
studied that correspond to two different physical situations. The first case is the e+e- annihila- 
tion experiments where the hadronic system as a whole is at rest in the laboratory reference 
frame and one aims to emphasize rotational symmetry. Then it is natural to regard the detector 
modules as covering a sphere. The other case corresponds to hadronic collisions where one 
emphasizes invariance with respect to boosts along the beam direction. One then deals with a 
cylindrical geometry. In what follows we consider the spherically symmetric case. Our nota- 
tions are mostly independent of a particular parametrization, so only a few formulas are af- 
fected by modifications needed for the case of hadronic collisions discussed in Sec. 13. 

Multiparticle states and their energy flows 4.1 

One deals with multiparticle final states produced in collisions at a fixed point within a detec- 
tor where we place the origin of the coordinate system. For each particle in such a state, a de- 
tector installation measures its characteristics. Calorimetric detectors measure its energy E > 0 
and the direction in which it goes (denoted as i). 

Parametrization of directions j3 4.2 

A simple way is to represent the direction ji as a unit 3-vector i* = 1, which ic a point of 
S,. the unit sphere in 3-dimensional Euclidean space. One can parametrize it. e.g., with the two 
standard angles, 6 and cp. But what really fixes the spherical geometry is how one defines inte- 
gration over i. If fl is a set of directions then for the spherical geometry one defines: 

1, di = surface of R. 4.3 

In terms of the angles 6 and cp : 

4.4 

Angular distance between directions: ‘angular separation” 4.5 
Another quantity that depends on whether one uses spherical or cylindrical geometry is the 

measure of distance between two directions corresponding to two particles. One such measure 
used in the context of spherical geometry is the angle between the two directions: 

eii = arccos~ijj. 4.6 

A posteriori, however, it turns out that another quantity appears in the expressions on a regular 
basis - the quantity we call mgulur separation and denote as Aii systematically throughout 
this work. Its specific expression in terms of angles etc. depends on a particular kinematic 
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situation. For the spherically symmetric case of e+e- + hadrons the angular separation is de- 
fmed as follows: 

The considerations that went into the de6nition 4.7 am as follows: 
(i) For small angular distances between the two dictions ii and ij the factor Aii should be 
useable as the angular factor in the optimal preclustering criterion 7.39. 
(ii) For large angular distances. it should be useable as a natural buildiig block for the jet dis- 
crimina~ors J, defined in Sec. 8 (cf. E!q. 8.8). 

(iii) It should be as geometrically natural as possible for a given kinematical framework. In 
particular, it should conform to the structure of typical factors in matrix elements; this facili- 
tates theoretical study of, e.g., J, that play a central role in the C-algebra of obsexvables de- 
scribed in subsequent sections. 

Note that the formulas expressed in terms of the angular separation remain valid in the case 
of cylindrical kinematics of hadron-hadron collisions - all one has to do is to redefine Ay ap- 
propriately; cf. Sec. 13. 

Calorimetric information and energy flow 4.6 
We will distinguish r&rimerric informurion (i.e. E and j for all particles constituting a 

given tinal state) from other types of information. If one retains only calorimetric information 
about the fmal state, then one obtains what is called energyflow of this state. It is the ways to 
measure the geometric shape of the energy flow that wilI be our object of study. All the non- 
calorimetric information is then treated as additional parameters (e.g. momenta of “high-pr 
muons” etc.). 

There is some arbiuatiness in separating what one will treat as calorimetric information: if 
one believes one can identify an intermediate particle from purely calorimetric data with 
enough confidence and precision, one may be willing to treat it as a non-calorimetric informa- 
tion. We are interested in situations where not all data can be treated as non-calorimetric, and 
it is the calorimetric information that we focus upon. 

Thus, a Snal state P is characterized by its energy flow (calorimetric information) and, per- 
haps, some other parameters which we will treat as implicit. For simplicity of notation, we will 
not distinguish the multiparticle state from its energy flow.’ 

A tinal state as seen by an ideal calorimetric detector (with perfect energy and angular reso- 
lution) is represented as 

Calorimetric detectors do not distinguish types of particles, so the states are not affected by 
permutations of pi. 

It is convenient to have a notation for the state P consisting of all particles from other states, 

’ Energy flows ate elements of the factor space of the space of final states with respect to the equivalence reta- 
tion of fragmentation invariance. Drawing suc4ad&inction explicitly would be tot cumbersome. 
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e.g. P, and Pb. Then we write 

P= P, @Pb. 4.10 

Lorentz invariance 4.11 

The concrete formulas below are motivated by the idealization that is usual in high energy 
experiments, namely, that all particles are massless. If such an idealization is valid, then the 3- 
momenmm of a pardcle is p = Ej, and the 4-momentum is p = (E,p) , p2 = 0. A Lorentx- 
covariant expression for the energy is 

E=pP, P2=l, 4.12 

where P is a 4-vector whose rest frame defmes the coordinate system. Then a Lorenta cova$ 
ant expression in the P’s rest tiarne for the angles 0 I Oii I x between pairs of particles can be 
obtained from the following relation: 

4.13 

The concept of jet is not Lorentz-invariant, and the calorimetric data (energies and dictions 
of particles) are specific to the detector rest frame. In some cases one may wish to look at an 
event in a reference frame other than the detector rest frame [47]. This entails performing a 
Lorentz transformation that makes use of the rrnzi~~sness assumption. But although Lorentx 
mvariance provides motivations for tixing details in concrete formulas for observables, it is an 
extrinsic concept for the issues we address in the theory of calorimetric observables. Thus. the 
4-momentum introduced above is just a convenient label, while the basic objects are the energy 
and direction, both immediately measurable and subject to errors. This means that studying 
corrections due to non-zero masses is relegated to the theory department where it properly 
belongs. Note that such corrections can be studied in the general context of power (higher 
twist) corrections. This is discussed in Sec. 6.16. 

Detectors 4.14 

A realistic detector installation consists of a large but finite number of elementary calorime- 
ter modules. Each such module may be represented by a continuous function w(j) that takes 
the values between 0 and 1 and describes the local efficiency of the module, and the energy it 
measures for a state P is: 

(‘TV) E Ciy Ej W(iii) . 4.15 

Data records 4.16 

Let the c-th module of the detector be described by w,(i). Then what the entire detector 
sees about the final state P is the collection of numbers 

EC =(P,I&), c=l,... . 4.17 



The modules are chosen to have small angular sizes, and one assumes that all the information 
one needs is the approximate position 4, of the calorimeter module. Then a typical data record 
is a finite array of the form 

Given sufficient energy and angular resolutions of individual detector modules, a physicist re- 
gards such a data record as an adequate. representation of the exact energy flow 4.9. 

All possible different detector records from all imaginable detector installations form a 
mathematical infinitely dimensional space (= the space of data records). Formally, multipatticle 
states 4.9 with finite numbers of particles are elements of that space. 

I emphasize that when translated into the language of mathematics, the implicit physical 
convention that a detector record is “close within detector resolution” to the corresponding 
physical multiparticle state, becomes an axiom that determines one of many mathematically 
possible forms of convergence in the space of data records - a convergence predetermined by 
the structure of measuring devices (calorimetric detectors in the present case). This is a central 
point to which we will soon return. 

Energy flows as “abstract measures” 4.19 

The structure of 4.15 suggest the following mathematical interpretation: Each multiparticle 
linal state P as seen by all imaginable calorimetric detectors is represented bv a sum of 6 
functions: 

To interpret this expression correctly, recall that, by definition, the &function S(i, gi) acquires 
a concrete numerical meaning only in integrals with continuous functions: 

L dj VU) sC$s6i)~WUi)~ 

Correspondingly, Elq. 4.20 represents the collection of all values of integrals with all possible 
continuous functions I+I (the values of such integrals reduce to 4.15). 

In mathematical language, the objects represented by 4.20 are linear functionals defined on 
all continuous functions on S, - for each such function they deline a number (given by 4.15). 
Such objects are called meurures on &. To avoid confusion with physical measurements, we 
will use the term absrracr measure to denote such objects. (For a background mathematical 
information on abstract measures see Sets. 15-16.) 

For applications it would be sufficient to have in view the two formulas 4.20 and 4.21. 

Calorimetric convergence (Cconvergence). When are two energy flows close? 4.22 

We have come to the key point of our study, namely, a mathematical description of close- 
ness of energy flows of multipatticle states. This is achieved by introducing a convergence in 
the space of all energy flows - the convergence determined by the measurement devices (cf. 
Secs.3.7-3.14). 

Suppose one has a sequence P, of multiparticle states (abstract measures, or linear func- 
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tionals). We say that it converges to a multiparticle state P if for any detector module de- 
scribed by a continuous function w, the values of energies measured by y for P,, converge to 
the energy measured by w for P: 

lim(P,,~)=(P,\y), foranyallowedtq. 
?I+-= 

4.23 

The reasoning of Sec.3.10 shows that P, will then be indiitinguishable for any detector instal- 
lation consisting of a finite number of detector modules for all sufficiently large n. We call this 
calorimerric convergence (C-convergence for short). 

Mathematically, this is a special case of the general notion of *-weak topology in a space of 
linear functionals (Sec.3.13). Such topologies cannot, in general, be described by a simple sin- 
gle-valued distance or norm, which makes them seem somewhat amorphous for applications. 
Nevertheless, the above definition is precise enough to allow one to tind constructive ways to 
deal with the situation. 

C-convergence and collinear fragmentations 4.24 

Let us explain the meaning of C-convergence with a few examples. One easily verifies from 
the definition that an energy flow changes C-continuously under any of the following modifi- 
cations: 
(i) Continuous variations in the energies of the particles constituting the event (energies are 
never known pre;&y). 
(ii) Adding any number of arbitrarily directed pa&les with the total energy going to zero 
(and the number and directions of patticles may change arbitrarily in the process). Indeed, soft 
particles may escape undetected and their total number is unknown. 
(iii) Continuous variations of the angular parameters of particles in the event. This is because 
particles’ dictions are determined up to the size of calorimeter modules. 
(iv) Almost-col:ineur fragmenrarions. This can be regarded as a combination of an exact 
fragmentation and (iii). An exactfragmentation ’ consists in a replacement of a parent particle 
by any number of collinear fragments, 

E.j+E,,ja;...;Eb,j& 4.25 

where 

E=E,+...+Eb. &,=...=&=+. 4.26 

This of course does not change the energy flow 4.20. If after such a fragmentation one changes 
the directions of the fragments a little, one obtains an almost-collinear fragmentation. 

Correctness of the scheme 4.27 

We have introduced a mathematical model for energy flow via a somewhat loose reasoning 
using the physical notions of particle etc. that are extrinsic with respect to the numsutement 
process as such. We should verify that no inconsistency was introduced thereby. To this end, it 

‘The notion of.fragmentation was introduced in [Z] and formalized in [48], where the adjective “exact” was not 
used because data errors were not analyzed. 
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remains to recall the simple mathematical fact that any measure can be approximated in the 
*-weak topology by finite sums of &functions, and the space of abstract measures is complete 
in that topology (cf. Sets. 15-16). 

The data record 4.18 can be viewed as a finite sum of &functions on the sphere (the energies 
measured by individual detector cells are the coefficients, and their positions are the points 
where the &functions are localized). The completion of the space of all data records with re- 
spect to the C-convergence restores abstract measures as ideal representations of energy flow. 
Another aspect of this is that we never see the tinal state as such (except in Monte Carlo 
modeling) but only the energies measured by calorimetric cells; in an operational sense, a final 
state is a collection of the data records produced by ah possible calorimetric detectors. 

The physical meaning of the C-convergence clarifies in a broader context of the discussion 
of Sec.3. It may be helpful to represent the analogy between calorimetric measurements and 
the measurements of length as in Table 4.28. 

length energy flow 
. . . ..-.-.. - . .._..................................................~............................................................................ 

ruler calorimetric detector - . . . _” .-.----.--..---.--..-...--. - _.., - ._....__._.” ..--..._....._.... - .._....._...............~..................... 
rational number ..~..................................... ; data record . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ___..........___....._...~~~.....~............................................................... 

usual convergence 
of rational numbers 

! Cconvergence 
i p-weak topology) .- ..-.... - ..-.-I_-- --...-..--:-.--.-.---_..-“~..-..- ..-.... - .-.................. 

real number zb&xt measure 4.28 

Comparison with the L2 formalism 4.29 

As was already emphasized, the space of ah energy flows is infinitely dimensional, and there 
arc many nonequivalent continuities in such spaces. Choosing a wrong one may be rather mis- 
leading. To appreciate the subtlety of the problem, recall the large scale study described in [20] 
where an idealization of energy flows as ordinary functions on S, was adopted. To measure 
closeness of energy flows, the following norm was chosen: 

4.30 

The resulting I!.’ topology is familiar from courses of quantum mechanics, is very similar to 
norms in finitedimensional Euclidean spaces, is fairly easy to deal with, and allows a number 
of sophisticated constructions, e.g. expansions in spherical harmonics, summations involving 3- 
j symbols, etc. 

Unfortunately, such superficial analogies have strictly nothing to do with physics. Indeed, it 
is well-known (and is rather obvious) that the L2 norm is a poor tool for comparing shapes, 
which is exactly what one has to do when classifying events with respect to the geometty of 
energy flow. In pardcuiar, the L2 norm of the energy flow corresponding to a fmite number of 
non-soft particles, 4.20, is infinite. 

One reason why the research of [20] was led astray was an unmotivated transition to 
“continuous ~hmit” (interpreted there as a replacement of the energy flow with an ordinary 
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function) prior to specifying the notion of convergence with respect to which the “limit” is un- 
derstood. 

Correct continuous limit 4.31 

Our interpretation allows taking infinite - and even continuous - sums in 4.20, which can 
be done as long as the total energy remains finite. The limiting procedures implied thereby are 
to be understood as applied to each value of the functional representing energy flow, on each 
continuous function. For instance, consider a continuous sum, 

where E, is. e.g., a continuous function of a and the integration may run, e.g., over a non- 
zero length arc on s2, or over a part of s2 with non-zero surface. Then one has, by deftit& 
of the &function, 

(P.v)=~daE,v(&,), 4.33 

where the integral is well-defined in the usual sense. 
Eq. 4.33 remains well-defined as long as w is continuous and the total energy is finite: 

I da,?,<-. 4.34 

In particuhrr, the definition of C-convergence remains valid in the case of more general energy 
flows that cannot be associated with states with finite number of particles (e.g. in QED). 
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Calorimetrically continuous (Ccontinuous) observables 5 

In the preceding Sec.4 we established the mathematical nature of “energy flow” as abstract 
measure on the unit sphere, together with a correct convergence (the C-convergence) that cor- 
responds to the structure of errors of multimcdule calorimetric detectors. But that was only an 
intermediate step. What one actually needs is a practical description of functions on final 
states/energy flows that are continuous with respect to the C-convergence of their arguments. 
In this section we describe a large class of such functions. (The special role of continuous ob- 
servables was discussed in Sec.2.) 

Recalling that an (ideal) energy flow P is an abstract measure (= a linear functional on con- 
tinuous functions on the unit sphere; Sec.4.19). one cannot miss the mathematical subtlety of 
the situation: an obsemxble F(P) is a numeric-valued funcrion defined on linear function& 
defined on continuousfunctions defined on the unit sphere. There seems to exist no systematic 
mathematical study of the structure of non-linear functions on functional spaces in the con- 
structive aspect. 

Nevertheless, it turns out possible to point out a useful basic class of such functions in our 
case (C-correlators; Sec.5.1, esp. Sec.5.15). C-correlators also turn out to have a natural QFI 
interpretation (discussed in Sec.6.1). The latter property opens a prospect of their systematic 
theoretical study. Moreover, as described in Sec.5.22, C-correlators can be organized into 
more sophisticated C-continuous observables (e.g. the spectral discriminators introduced in 
Sec. 13) ttl: !srming an algebra (C-algebra) in terms of which any physical feature can be ex- 
pressed in a correct numerical fashion. 

Ccorrelators: basic Ccontinuous observables 5.1 

Linear functions of energy flows 5.2 

Abstract measures P are defined as linear function& (Pq) on continuous functions cp, for- 
mally represented as 

(4’) = js, d$ Wi3cpW. 

Fix one such function q(j) and consider the expression (Pq) as a function of P: 

Fv 0’) = (b) . 5.4 

It is almost a tautology to say that this is a C-continuous function of P. Indeed, recall that the 
C-convergence was defined in Sec.4.22 by requiring continuity of functions of exactly tbis 
form with special cp varying between 0 and 1. However, linearity ensures that the expression 
5.4 with arbitrary continuous cp are also continuous. 

If P describes a finite number of particles (4.9 and 4.20) or a detector record 4.18, then 
Eq. 5.4 becomes 

5.5 
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Note that this expression is obviously invariant with respect to exact fragmentations 4.25. 
Equally obviously, smatl variations of angles and energies as well as almost collinear fragmen- 
tations (Sec.4.24) result in small variations of F. 

Examples 5.6 
Let 0 I rp(j) 5 1 be a continuous function on the unit sphere. It can be thought of as describ- 

ing the local acceptance of a detector cell. Then the expression 5.5 gives the energy deposited 
in that cell. A trivial special case (cp(b) = 1) is the total energy of the event: 

E,, = E(P) t? ck Ei . 5.7 

Less trivial examples are the multipole (non-spherically symmetric) moments used as elemen- 
tary building blocks in the constructions of [20]. 

Bilinear scalar functions of energy flows 5.6 
A standard mathematical construction is to take a tensor product of two or more measures 

([42], sec. IV.8). Consider a direct product S, xSz of two unit spheres (its points are 
parametrized by a pair of unit 3-vectors, @‘,j”) E S, x S, or, equivalently, by four angles). 
Let cp(@‘,j”) be a continuous function on S, x.5$. Then the well-defined expression 

@j’, = I,d~“P”(~“)cp(~‘,~“) 5.9 

is a continuous function on the unit sphere and one can perform another integration with P’: 

Is d~‘P’(i’)~(~‘) . 5.10 

This defines a measure on S, x S, that can be denoted as 

[p’xp”](~‘,~“)=p’(jY)xP”(j”). 5.11 

Correctness of the construction - the required continuity properties etc. - is verified in detail 
in Theorem 73 of [42]. In particular, the result is independent of the order of integrations. 

In particular, one can take P’ = P” = P. Applying the arguments of Sec.5.2 to the measure 
P x P thus constructed, one obtains a C-continuous function that is bilinear in energy flow: 

F,(P)=IS,dj’l,,dj” P(j’)P($‘)cp(jY,j”). 5.12 

If P has a discrete form of 4.20 (cf. also 4.18). then one obtains: 

F,(PXP)=C~~iEjcP(~i.~j). 5.13 

Without loss of generality, one takes cp to be symmetric in its two arguments. 
For imttcz, the total invariant mass’ of ac event P ’ IS given (under the usual assumption of 

masslessness of alI particles) by the following special case of 5.13: 

’ We are. always taking about invariant mass squared unless explicitly stated otherwise. 



Sto, =s(P)sf &EiEi(l-~iJ?j). 

Multilinear Ccorrelators 

More generally, let 

5.15 

f,t&.....&, 20 5.16 

be a continuous symmetric function of m unit vectors (i.e. a function on a direct product of m 
copies of the unit sphere, .Sr ; also, the assumption of positivity results in no loss of generaiity 
because one can always write f, = f,’ -f; with fz > 0). Then the following expression de- 
fines a C-continuous observable: 

Fm(P)=&md$,...d&, P(j,) . . . Pt&,)f,(i+.--.k,,). 

For example, a sequence of observables of this form with specially chosen f,,, quantify the 
feature known as the “number of jets” (the so-called jet discriminators of Sec. 8). 

Regularity restriction from IR safety 5.19 
In general one would prefer some sort of a more stringent regularity rather than a mere con- 

tinuity (cf. (iii), Sec.2.21). For instance, the requirement of IR safety [2] implies that the ob- 
servables should be e.g. Hijlder continuous [48] (see below Sec.6.9). For C-correlators, it is 
sufficient to impose appropriate restrictions onto their component functions f, in 5.18. In the 
cases of practical interest that we will consider f, happen to be infinitely differentiable. 

Comparison with EEC observables 5.20 
A sequence of multiparticle correlators of a special form simdar to 5.18 for studying multijet 

structure was introduced in [22] (the antenna pattern, the energy-energy correlators etc.; cf. 
the discussion of their phenomenological applications in [35]). However, those correlators are 
defmed with discontinuous angular functions in the form of cutoffs (taking values 0 and 1). 
Therefore, they are, seictly speaking, not C-continuous. 

Ccorrelators and “physical information” 521 
It is convenient to call the observables of the special form 5.17. 5.18 C-correiurors. It turns 

out that they play a central role in our theory: 
. They are directly connected with the underlying QFT formalism (Sec.6.1). 
. One can express any interesting physical feature in terms of them (Sets. 5.22 and 8-I 3). 
It therefore makes sense to say that the collection of values of all C-correlators on a given !kai 
state constitutes the entire “physical information” about that state. 

Note that zany discontinuous observable can be approximated (in an appropriate integral 
sense with respect to integration over all final states) by C-continuous ones. From such a 
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viewpoint, no physical information is lost due to the restriction of C-continuity. 

Calgebra 5.22 

By C-algebra we understand a collection of C-continuous observables built from C- 
cot-relators following a few simple operations listed below that preserve C-continuity. An ex- 
ample involving integration over a parameter already occurred in the construction of bilinear 
C-continuous functions. The basic operations provide a sufficient flexibility to allow one to ex- 
press jet-related physics in terms of observables from the C-algebra. In particular, the spectral 
discriminators (Sesc. 10-l 1) are built this way. In view of this, whether or not the C-algebra 
comprises all possible C-continuous observables becomes an issue of somewhat academic in- 
terest and will not be discussed. 

Note that limiting procedures may violate C-continuity (cf. the counterexample in Sec.6.9), 
so some (minimal) care has to be exercised. 

Composition of Ccontinuous functions 5.23 
Obviously, finite algebraic combinations (linear combinations and products) of C-continuous 

functions yield again C-continuous functions. 
Mom generally, if a C-continuous F(P) takes values in a region D, and f(z) is a continuous 

function of z E D, then f(F(P)) is C-continuous. In particular, expF(P) is C-continuous. 
Division is allowed provided the denominator can not become infinitesimally small for the fi- 

nal ::ztcs one works with. In particular, one can divide the basic observable 5.18 by m-th 
power of the total energy 5.7. Then one only has to deal with energy fractions instead of abso- 
lute energies of the particles. (We will use this option in the definition of jet discriminators in 
Sec. 8. This is said to reduce systematic errors due to undetected soft particles.) 

A generalization of the above constructions is as follows. Let H( P, F) be a function of two 
arguments, the energy flow and a numeric parameter; suppose it is continuous in its pair of ar- 
guments (in the sense of C-convergence in its first argument, and in the numeric sense in the 
second argument). Let F(P) be another C-continuous function taking values of the same na- 
ture as the parameter. Then the composition 

F’(P) = H( P,F(P)) 5.24 

is C-continuous. This construction is extended straightforwardly to any finite number of argu- 
ments of both types. 

The composition 5.24 extends stmightfotwardly to the case when the second argument has a 
non-numeric nature (e.g. is a measure etc.). 

Filters and substates 5.25 
One often wishes to study certain substates of a tinal state P (e.g. when searching for a par- 

ticle that decays into jets). It would then be natural to treat the substate as a final state in its 
own right and compute observables for it (e.g. its invariant mass). 

The fim question is how to specify a group of par&k within our formalism i.e. using the 
language of C-observables. The only natural way to do so is via a continuous function 
02 0(j) I1 which we call filter. Then the subset consists of those particles for which 
0 (ii) > 0; we say that such particles are “filtered” by Q,. The energies of the particles of the 



substate are taken to be Ei @(ii) with the directions unaffected. Denote the substate thus ob- 
tained as 

5.26 

(cf. Eq.4.9). Thefilrering 

P+@oP 5.27 

is a C-continuous operation: a C-convergent sequence of final states becomes a C-convergent 
sequence of filtered substates (which, formally, are also elements of the space of final states). 

One can take a composition of the mapping 5.27 with any C-continuous observable F(P). 
The result, F(@ 0 P) , is C-continuous. 

For instance, the invariant mass of the substate Q, 0 P is given by the following expression: 

5.26 

Similarly, the expression J,(@oP) measures how well the substate can be characterized as 
having no less than 3 jets. (The observables J, for measuring the “number of jets” are studied 
in Sets. 8-9.) 

Integration over a parameter 5.29 
Another construction that preserves C-continuity is integration of a C-continuous observable 

over a parameter (which may be multidimensional): 

J dy W.Y). 5.30 

In practice, it is sufficient to require that the domain of variation of y is compact. and that 
IH(P,y)I is bounded by a constant independent of P (cf. the Lebesgue convergence theorem; 
see Theorem 34 of [42]). 

Minimization with respect t:, a parameter 5.31 

Integration considered above is the most useful example of a construction that involves a 
lilting procedure but, nevertheless, yields a C-continuous function. Another useful example is 
a mikkation (maximization) with respect to a parameter. If the parameter is discrete and 
takes values from a finite set then the result, 

min(FlP).F2tP)), 5.32 

is again a C-continuous function. (Extension to more than two functions is obvious.) 
With a parameter taking an infinite number of values (e.g. a continuous one) the situation is 

more tricky because, in general, limiting procedures may violate continuity even in the case of 
ordinary continuous functions of a real argument. (An example is discussed in Sec.6.9.) How- 
ever, the precautions one has to take to avoid such pathologies prove neither difficult to un- 
derstand nor too restrictive. 

Consider the following expression: 
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minHP,y), 
Y 

5.33 

where y is a continuous parameter varying in a connected compact region, e.g. an interval with 
both ends included, a sphere, etc. To functions of this class belong the standard observables 
known as spherocity, acomplanatity, etc. (see [lo] for a complete list and references). Of 
course, the function H must be continuous in its pair of arguments but that is not enough. The 
IWO useful cases when C-continuity of 5.33 is ensured are as follows. 

The iirst (obvious) case is when H is a composition of an ordinary continuous function of 
two real arguments, h(x,y), and a C-continuous function F(P), 

W,Y) = W(P),y), 5.34 

and min., h(x,y) is a continuous function of x. 
The second case is when the angular function f,,, of a C-correlator 5.18 depends on y. The 

dependence should be such that, roughly speaking, the rate of variation of fm with respect to 
its angular arguments is independent of y. For instance, y may describe rotations of f, as a 
whole (as is the case with spherocity etc.). But one should avoid the cases when y is, say, the 
radius of the region within which f,,, is localized, and y is allowed to go to zero (cf. Sec.6.13, 
esp. Eq. 6.15 and the remarks thereafter). 

Differential Ccontinuous observables 5.35 

It is common practice to consider differential distributions of events with respect to an ob- 
servable. Then one considers expressions of the following form: 

I dWW(z-AU’)), 5.36 

where integration is over all final states P against the probability n(P) defined by the .%nanix 
(cf. 2.7). Such a construction is also possible with C-continuous tibservables, in particular, C- 
correlators. 

The expression 5.36, however, is too simple to be really useful for measuring multijet struc- 
ture. Indeed, even to describe the feature known as “number of jets” one properly needs an 
infinite sequence of scalar observables. Consider a C-continuous observable F(P.y) that de- 

pends on a parameter y and takes values from the interval [O,l] (which can be achieved by ap- 
propriate normalization). Consider the expression 

j dPx(P)Idy6(z-F(P.y)). 5.37 

One can regard this construction as an “extension of phase space”, P + P, y and defining a 
differential observable on the “extended events”. (If one introduces a normalized weight de- 
pending on ythen the analogy with 5.36 is complete; cf. Sec. 13.30.) 

Eq.5.37 is equivalent to measuring the observable defined by the following “function” on ti- 
nal states: 

f(z) =~~Y~(z-RRY)). 5.38 
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f(z) is not necessarily a continuous function of z but may, in general, contain singular 6 
functional components (cf. Sec. 11.11). Therefore it is essential to understand its mathematical 
nature (in order e.g. to correctly treat such issues as approximations and data errors): 

A &function is defined by integrals with continuous functions. The same is true for 5.38: Let 
x(z) be continuous for z E [O,l]. Then /dyX(F(P,y)) is C-continuous. It can also be repre- 
sented as follows: 

Idyx(F(P,y))‘~~dzx(z)f(z). 5.39 

The net effect is that f(z) acquires meaning after integration with a continuous function. 
Mathematically, this means that f(z) is an “abstract measure” on z E [O.lJ for each final state P 
(for definitions see Sec.15), i.e. Eq.5.38 represents a measure-valued C-continuous observ- 
able. 

It may be worthwhile to emphasize that the expression 5.38 is, in fact, a shorthand notation 
for the collection of 5.39 for all allowed x. Therefore, the convergence of values of 5.38 is to 
be understood as numerical convergence of all expressions 5.39 - without, however, requir- 
ing any correlation of the rate of convergence for different x. 

Measure-valued observables emerge most naturally in the context of studying spectral prop- 
erties of multijet substates. Recall e.g. that the spectral density of a quantum propagator is a 
measure (a single &function in the case or n free particle). More generally, spectral densities of 
&ii-adjoint operators (e.g. quantum mechanical Hamiltonians) are also, in general, meas;;s, 
etc. Measures are singled out from among all distributions by the fact that it makes sense to 
talk about their positivity - which is exactly why they occur in spectral problems. 

The occurrence of measure-valued observables, however, has nothing to do whatsoever with 
the fact that the energy flow of an event is also interpreted as a measure on the unit sphere.. 
Even if all the energy flows were ordinary continuous functions. the spectral observables (the 
spectral discriminators introduced below) could contain singular &functional components. 
Vice versa, a spectral discriminator for an energy flow corresponding to a few isolated parti- 
cles (and, consequently, represented as a sum of &functions on the unit sphere) may happen to 
be a continuous function. 

The above construction becomes particularly useful in combinations with the filtering of 
Sec.5.25 -see below Sec. 11.1. Further options for construction of C-continuous observables 
are discussed in Sec. 13.29 



Ccorrelators and Quantum Field Theory 6 

To compare results of precision measurements with theoretical predictions, one wishes the 
latter to be as precise and reliile as the former. A high quality of theoretical calculations can 
only be achieved within a systematic formalism of Quantum Field Theory. The C-correlators 
5.18 fit well into the framework of QFI. Moreover, the form 5.18 for jet-related observables 
can be easily obtained if one follows the very basic guidelines of QFT together with minimal 
continuity requirements motivated by the conclusions of Sec.2.21. That fact strengthens the 
central position of C-correlators in the theory of jets and opens a prospect for advances in the 
study of various kinds of corrections - logarithmic perturbative higher-order terms, power- 
suppressed non-perturbative contributions, etc. 

Ccorrelators from the point of view of QFT 6.1 

A fundamental ingredient of QFT is the fact that interactions of elementary particles occurs 
via emission/absorption of quanta. Therefore, one deals here with systems with a varying num 
ber of particles. Much thought was given to this, and a general, systematic, and well-studied 
formal scheme for analysis of such systems is provided by the formalism of secondary quanti- 
ration. Then one works with two-, three-, . . . particle cot-relators, each “particle” of a correla- 
tor corresponding to an operator that probes a particular physical feature (e.g. energy density 
etc.)’ Moreover, one can make a stronger statement, namely, that if a complex physical feature 
cannot be expressed in terms of multiparticle cotrelators, the observables indigenous to QFf, 
then it cannot be. a correct observable at all. Recall in this respect also that vacuum averages of 
products of field operators - the Wightman functions - carry a complete information on 
QFI models. 

It is not difficult to realize that any C-correlator 5.18 has exactly the following form of a 
correlator of Bose-Einstein type: 

c c ~ !“‘~ , 
lSi,‘r<...ci,,SNpm k,+...+kn=m 1 ‘.’ n’ 

E,~...E~ f,C~,,....~,, ..., i$....7jin). 6.2 
k, times kn times 

Because we deal with quantum averages expressed via matrix elements squared rather than 
wave functions, the Fermi statistics does not occur. The corresponding expression in operator 
terms has the following general structure.: 

p~v.+Jp, o P1v-.PNpyt 
I I 

j(q) = E, u+(q)a(q) . 6.3 

’ See e.g. [36]. [37] for a detailed discussion of such issues. The mxtment of [37) particularly emphasizes the 
role of correlators in studies of multiparticle systems. Note that here again we are dealing with a purely kine- 
matical aspect that has never been properly addressed in the theory of jets. 



(p is the standard l-particle phase space measure.) Such an operator interpretation ieaves open 
a possibility of their investigation using methods of QlT. An example of such a study is [49]. 
Ref. [50] discusses a representation of 6.3 in terms of the so-called jet fields that have a simple 
physical space-time interpretation. 

The above QFT form of C-correlators (cf. also the results of [50]) is to be appreciated in 
view of the fact that as follows from the results of Secs.8-13 it is theoretically sufficient to 
study C-correlators because other jet-related observables can be expressed in their terms. 

An alternative derivation of Ccorrelators 6.4 
The derivation of C-correlators in the form 5.17 did not use assumptions about the underly- 

ing theory. Then we showed that they have a natural QFT interpretation (Sec.6.1). Let us now 
approach the issue from the opposite end: Let us begin with a multiparticle correlator, impose 
the restriction of fragmentation invariance 4.25, and obtain an observable of the form 5.18. In 
fact, we will use a somewhat stronger form of fragmentation invariance including a require- 
ment of continuity inspired by the analysis of Sec.25 This and the obligatory corrclator form 
of observables are the two ingredients that were lacking in [2] and [48]. 

An m-particle correlator has the following form with an arbitrary correlator function f,,,: 

F,(P) =Cj,,,,imfm(Pi,,...,Pi,). 

Consider for simplicity the case m = 2. First for an integer n the fragmentation invariance yields 
F2(np) = F2(p.p,.... p). where the argument on the r.rr.;r. 1s a state with n equal particles. 
From this and 6.5 one obtains fz (np,np) = nZfi (p, p). From this and a similar restriction with 
k instead of n one obtains a similar restriction with a ra5onal r = nl k instead of integer n. The 
condition that the observables should be insensitive to adding soft particles results in continuity 
with respect to energies whence follows a similar scaling for any real r. Then 
f2(p,p)=E2f2(j,j3). In asimilarway one obtains f2(p.nq)=nf2(p.q) for any integern, 
etc. - until the desired form of energy dependence is obtained. Imposing a simplest require- 
ment of continuity with respect to the angular variables (= minimal sensitivity to almost collin- 
ear fragmentations, as motivated by the analysis of Sec.2.5) results in the restriction of conti- 
nuity of the angular function. 

Fragmentation invariance of Ccorrelators 6.6 
The combinatorial structure of C-conzlators can be studied most easily with the help of the 

following representation in terms of functional derivatives: 

Eq.5.18 =$)‘“lG ,... ~,f,(~,,...,~,)~(~t)...fl(~m), 

where 
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Now all the dependence on the particle content of the state is localized within D. In particular, 
the fragmentation invariance of 5.18 and 6.2 (with respect to exact fragmentations 4.25) is an 
obvious consequence of linearity of ‘D in particles’ energies. 

Ccontinuity vs. IR safety 6.9 

An interesting general issue is how C-continuity relates to the IR safety, the notion familiar 
from the QCD theory of hadronic jets [2]. An obvious example of an observable that is IR safe 
but cannot be C-continuous is the “number of jets”. The observable “number of jets” cannot be 
continuous for all final states because it takes discrete values. One may wonder whether there 
exist observables that ate IR safe and continuous in a naive sense but are not C-continuous. 
Below we am going to present an example of such a functions. 

The issue of IR safety is usually discussed in the context of perturbative QCD where final 
states consist of a finite number of partons (quarks and gluons). Let F(P) be an arbitrary func- 
tion on Iinal states. Define its component functions F, by restricting F to states with finite 
number of particles, as follows: 

F(P)= &(p,,....p,), 6.10 

where for simplicity each of the n particles of the final state is represented by its 3-momentum. 
Since the multipatticle state does not change if the particles are permuted, each F, must be 

symmetric in its arguments. An observable that can be measured by calorimeters has t: ‘be [2], 
as a minimum, fragmentation invariant, i.e. invariant with respect to exact collinear fragmenta- 
tions, whence : 

F,(PI .--PJ= F,+,(P, ,..., Cl-z)p,,qJ,), O<z<l. 6.11 

This condition of fragmentation invariance is, of course, well-known from the studies of 
IR safety in the context of QCD [2]. In particular, if a QCD observable is to be IR ;mite for a 
multiparticle (quark and gluon) tinal state order by order in perturbation theory, then L addi- 
tion to fragmentation invariance, the functions F, should satisfy some minimum regularity re- 
quirements 1481. It is sufficient that each F, has bounded (not necessarily continuous) deriva- 

tives with respect to its arguments: 

If(x)-f(Y)12 MIX-yl, 6.12 

for any sufficiently close pair x, y. Fragmentation invariance plus the above regularity amount 
to IR safety in the usual sense. 

However, such conditions impose no restriction on how fast the functions F, vary as 
n + m. In particular, them is no limit on how fast the derivatives of F, grow as n + -. In the 
notations of 6.12, this means that M may depend on n, and M may grow arbitrarily fast as 
n--t-. 

A continuous and perturbatively IR safe function that is not Gcontinuous 6.13 

Here is an example of a fragmentation invariant function on tinal states whose component 
functions vary arbitrarily fast. Consider the following function: 



Fbad 0’) = CL,, F,n 0’). 6.14 

with F,,, delined by 5.18, and 

f,(i$.....iL) = ts$ti(~n[l.%jiz,]) I 6.15 

where eii is the angle between fii and ij and z,,, > 0. The function 6.15 nullifies when any pair 
of its arguments is collinear, so that the series in 6.14 is truncated, therefore well-defined, and 
satisfies 6.12 in each order or perturbation theory. It follows that it is perturbatively IR safe. 

To see that it is not necessarily C-continuous, consider a one-particle final state P = (E, j) 
One can see that Fbad(P) = 0. Now fix an inlinite sequence of states P, such that each of them 
(i) has the total energy exactly equal to E; (ii) consists of n pairwise non-collinear particles 
with directions localized within a cone of angular radius h-’ around i. Then P, + P in the 

sense of C-continuity. However, the values Fbad(Pn) are expressed in terms of F,,,, m 5 n, and 
choosing z, + 0 for m--t - fast enough, one can ensure that the values Fbad(Pn) do not 

converge to Fbad (P) = 0. 

Although one is not likely to encounter an infmite sum of C-correlators like 6.14 in applica- 
tions, the moral of the example is that manipulations involving limiting procedures may violate 
C-continuity. This may !X the case e.g. with maximization/minimization with respect to a pa- 
rameter which affects the rate of variation of the functions describing angular dependences (cf. 
the dependence on z, in 6.15). 

Aspects of theoretical calculations 6.16 

The two general issues to be considered here are standard perturbative calculations and 
power corrections. One should also distinguish two types of observables: the basic class of 
relatively simple C-cotrelators (Sec.5.1; the most important example of C-correlators are the 
jet discriminators, Sec.8) and the complex observables such as spectral discriminators 
(Sec. 10). 

Analytical calculations of Ccorrelators 6.17 

Consider theoretical calculations of such observables as the jet discriminators of Sec.8. In 
general, if one deals with hadronic processes and non-& detector geometries, the perturbative 
calculations should follow the standard scheme: first one evaluates the matrix elements, and 
then one performs integrations (via Monte Carlo) over the phase space. However, the highly 
regular analytic structure of jet discriminators opens a possibility of their direct analytical 
evaluation - at least for the kinematically simplest, but fundamental annihilation process 
e+e- -9 hadrons . 

Indeed, the expressions of the jet discriminators J,, Eq.8.8, differ from the case of total 
cross sections only by the weights that have to be inserted into the phase space integrals. The 
weights are built of scalar products (cf. 13.4). and their form is such that calculations of a large 
number of diagrams is greatly simplified: due to masslessness, 2pip j = (pi + p j)2, and if par- 
tons pi and pi resulted from a decay of another virtual parton, the denominator of the propa- 
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gator of the latter is canceled. There are still powers of energies in the denominator (the factors 
(pip)-’ in 13.4) but their dependence on partons’ momenta is linear which in some cases 
simplifies calculations. Of course, there are also diagrams in which the above cancellation does 
not occur, but nevertheless the situation here is rather less difficult than in the case of other 
shape observables that can only be handled numerically. 

Another nice feature here is that since there are no phase space cutoffs involved, the stan- 
dard renormalization group equations are suflicient to perform resummation of logarithms - 
neither Sudakov resummations are necessary, nor factorization theorems much different from 
those for total cross sections [48], [51]. 

It is interesting to compare the case of jet discriminators (Jm) with the case of total cross 
section cr,,(e+e- + -) which is nothing but (J,) (up to an inessential numerical coefficient). 
For this quantity, analytical calculations were pushed through next-next-to-leading order [31]. 
That feat was made possible by the calculational methods [32], 1331, [34] that reduced the cal- 
culation to a rather mechanical feeding of the corresponding diagrams into a computer [52]. 
Unfortunately, the methods of [32], [33], [34] are based in an essential way on the possibility 
to Wick-rotate the unitarity diagrams in the case of cr,,(e+e- + -) - (J,) into Euclidean re- 
gion. But transition to Euclidean diagrams is impossible (at least in a straightforward manner) 
for (J,,,). m > 2, so the algorithms of [32], [33], [34] cannot be employed. Therefore, although 
the cancellations mentioned above actually make calculation of quite a few diagrams for 
(J,,,), m>2, eusier than for (4) - o,,(e+e- + c-:, nevertheless one can probably hardly ex- 
pect the NNL-order calculations to be doable in an entirely analytical fashion. But a combiia- 
tion of analytical and numerical techniques (cf. e.g. [53]) may work although the calculations 
remain very hard. 

Note that for the purposes of precision measurement of U,, it should probably be amply suf- 
ficient to have NNL corrections to {J3) (i.e. three terms in the QCD expansion in iji,). The NL 
corrections for (J4) are of about the same calcuIatio~al complexity while the leading term for 
(J,) should actually be simpler. (Notice that the QCD expansion for (Jm). m >2 in 

efe- + hadrons starts with O(#‘-*) .) 

Power corrections 6.18 

As was discussed in [35]. power corrections in the physics of jets seem to be numerically 
important (although, strictly speaking, it remains to be seen whether they will have the same 
numetical significance for, say, the jet discriminators). On the other hand, a theoretical study of 
hadronization effects reduces simply to (i) computing logarithmic corrections (via higher order 
petturbative contributions as discussed above) and (ii) studying and estimating power correc- 
tions to (Jm). Our formalism offers an interesting option for a theoretical study of power cor- 

Recall& case of e+e- + hadrons whem one has (J2) = amt. and where the structure of 
crtot including power corrections is well known. In this case otot can be connected via a dis- 
persion relation with the vacuum average of a chronological product of two currents, so that 
its asymptotic behavior is connected with the Wilson operator product expansion [54]. Then 
the power corrections emerge as vacuum averages of local operators of the Wilson expansion 
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(the so-called vacuum condensates). This was used for phenomenological purposes in [55]. 
From a theoretical viewpoint, it was demonstrated in [56], [.%I that such vacuum conden- 

sates are directly related to soft singularities of the expansion of the correlator in quark masses. 
Moreover, the structure of condensates can be determined explicitly even within perturbation 
theory. The vacuum condensates arc perturbatively uncalculable but they may be studied e.g. 
using the methods of lattice QCD. On the other hand, the coefficients with which the conden- 
sates enter the expression for the cross section, and which contain all the dependence on the 
energy of the process, am petturbativeiy calculable (cf. e.g. the two-loop calculations of 1571). 

A similar procedure can be used to study the structure of (Jm) for m > 2 : One would start 
with the corresponding petturbative expressions (a sum over Feynrnan diagrams with massive 
quarks etc.), and perform the expansion in powers and logarithms of quark masses 
(“factorization”). The non-analytic contributions associated with IR singularities (soft and col- 
linear) would be organized into some kind of operators (cf. the formalism and results of [SS]). 

Note that the presence of phase space weights in the expressions for jet discriminators does 
not allow one to perform the Wick rotation and reduce the integrals to Euclidean ones in a 
simple way. Therefore, one would need a non-Euclidean extension of the method of asymp- 
totic operation used in [58]. Such an extension is feasible (cf. [59], [60]). 
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Computing Ccontinuous observables from data 7 

In the preceding section we discussed theoretical calculability of C-cotrelators. In this sec- 
tion we consider the problem of their optimal computation from data.’ The point is that al- 
though the defining formula 5.18 is simple, the volume of arithmetic involved may be rather 
large. For instance, for a final state that lit up 200 calorimeter modules, computation of the 
5-th jet discriminator J, (Eq. 8.8) involves adding -3~10~ terms, each containing 5 energy and 
10 angular factors. Therefore, a straightforward approach may be unacceptable. However, one 
should bear in mind the following: 
. Such large numbers of particles in the foal state are more typical for future colliders such 
as LHC, and by then computing power will become many times cheaper. 
. The quality and amount of information from C-observables is higher than in the case of 
the conventional processing. The resulting safety margin leaves room for approximations. 
. The very regular analytic form of C-cot-relators 5.18 allows a number of optimizations. 

In what follows we concentrate on purely analytic optimizations while ignoring program- 
ming tricks (e.g. parallelization). Also, an ideal optimization method may depend, in general, 
on whether the event one deals with is “fuzzy” or has needle-like jets, etc., so that a complete 
optimal computational scheme depends on a concrete data sample. Therefore, only some typi- 
cal options are described below. 

Understanding the problem 7.1 

We are going to investigate optimal ways to compute the value F(P) of a C-correlator 5.18 
on one given event P. The event is represented by a data record of the form 4.18, and each 
calorimeter module is treated as a particle. The correctness of this is ensured by C-continuity 
by definition of the latter. 

Sources of optimizations 7.2 

In the cass of C-observables there are three (groups of) properties that can be made use of 
for optimization: 

1) The property of C-continuity (recall that it determined the energy dependence of C- 
correlators 5.18) which comes in two flavors (cf. Sec.4.24): 
la) Stability (i.e. continuous variation) with respect to almost collinear fragmentations. The 
small parameter that can be utilized here is a small angle between the fragments. 
lb) Stability with respect to adding soft particles, i.e. analyticity in particles’ energies. The 
small parameter hem may be taken to b-e the total energy fraction of soft particles. 
2) Information on a concrete form of the angular dependence, i.e. on the function 
fm,cj,....Q. 
3) Information on the structure of the event P. 

The properties 2) and 3), we only touch upon. The main focus below is on the C-continuity. 

’ There is no need to consider general C-continuous obswvables here because they are built from C-con&tots. 
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Criterion of optimization 7.3 

Unlike the conventional paradigm based on jet finding algorithms where observables are de- 
fined in terms of the output of such algorithms, in our theory observables are defined directly in 
terms of unprocessed events (final states). Therefore, the issue of what an observable should be 
is cleanly separated from how it is to be computed. The first advantage of such a separation is 
that once the observable is explicitly defined, one is free to use any tricks in order to compute 
it (including jet algorithms). The second advantage is that one now has a clear and unambigu- 
ous criterion to choose among optimization tricks. The criterion is the numeric quality of the 
resulting approximation. 

Soft particles 7.4 

We begin by considering the property lb) from Sec.7.2. We will fint show how the analy- 
ticity of C-correlators at zero particles’ energies can be exploited to obtain expansions in en- 
ergies of soft particles. Then we consider an important special case - the problem of esthat- 
ing effects of undetected particles (the so-called missing energy; Sec.7.14). 

Expanding in energies of soft particles 7.5 

The expression 5.18 allows one to perform Taylor expansion in energies of particles. Divide. 
all particles of the event into two groups, “soft” and “hard”: 

P=Pwftf13Phard. 7.6 

Then one can expand 5.18 as follows (e.g. using 6.7): 

F(P) = Wb,,) +F%‘h,, ;P,,)+F(2)(Phard;Pso[t)+..., 7.7 

where F(P,,) is the value of the observable F computed on the state Phard that consists of 
only “hard” particles, and 

F(‘)(p,,,j ;p,,) = m c Ei,...Ei -, 7.8 m 
il...&-,~Phud 

Fc2)(Phard ;P,, I= 9 c 
i]...i,,,-2Ephxd 

E;l--oEip* C 
im-iA#soft 

Ei,_,Eimfm(~i,,...,~i,). 7.9 

To see the computational savings, assume the numbers of hard and soft particles are equal. 
Then computing just the first term in 7.7, i.e. F(P&,), involves 2m times fewer terms than the 
complete calculation. Taking into account the first correction doubles the number of terms, 
which still means 2*’ times fewer terms than the complete calculation. 

Estimating the error 7.10 
As a simple exampie, consider the error involved in retaining only the first term F(Phd) on 

the r.h.s. of 7.7. The error can be estimated from the second term given by 7.8. There is a 
spectrum of possibilities for writing a bound for it. The following inequality seems to be ade- 
quate: 
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F( ” Phard ;P,,,))ImEmissE(Phud)FI1’(Phard), 
where the C-correlator E is defined in 5.7, 

E = E(Psor*) 
mss Whard) ’ 

and Fi’](P,& is the value on the hard subsystem Phard of the following C-correlator: 

FL’](P) = c Ej, . ..Eiw. f ;i,(j;, > . . . . ,m--l b ). 
j,....&-~~P 

7.12 

f $!,(j ,,....~~m-,)=supfm(~l.....~~m-,,~), 
i 

It is assumed here that the angular function f, is non-negative; cf. Sec.5.15. 
Similar estimates are easily obtained for higher terms. 
The factor m in 7.11 indicates that the higher C-correlators are increasingly more sensitive to 

the errors of such an approximation. In particular, they are increasingly more sensitive to errors 
due to undetected particles. 

Errors due to missing energy 7.14 

To estimate the error due to missing energy, i.e. the particles that escaped undetected, one 
simply uses 7.11, treating all missing particles as “‘soft” irrespective of their actual energies. 
(The estimate 7.11 did not assume that the individual particles am soft in any sense.) The 
missing energy enters the r.h.s. of 7.11 only via E. All other quantities are directly measurable. 

Missing energy for jet discriminators 7.15 

The above estimates did not use any concrete information on the angulcr function f,,,. Let us 
show how such information can be employed. As an example, we will estimate the effect of 
missing energy for the casz of the jet discriminators 8.8. (Their concrete physical meaning is of 
no importance here.) We are going to obtain estimates of a type somewhat different from 7.11 
for the “defect” defined as follows: 

defJ,(P)=J,(P)-J,(P,,,)>O. 7.16 

It is important here that all terms in the expression for J,(P) 8.8 are non-negative. 
The reasoning below will be in terms of energy fractions rather than absolute energies (cf. 

the normalization in 8.8). 
Assume that the total energy fraction of missing particles cwft (it is always less than Ebb, 

Eq.7.12) is distributed uniformly over the unit sphere total number is large. Then the desired 
estimate is obtained by replacing the summation over the soft particles by an integration over 
the unit sphere. For definiteness, consider the 3rd jet discriminator. The resulting expression is 
as follows: 

def J,(P)=yE,ftx EiEjAV x(~+~&@~)+O(&), 
i<j 

7.17 
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where the summation is restricted to “hard” particles. The factor in parentheses is between 23 
and 4/3. If one simply estimates it by 1. one obtains: 

def J,(P) = 3.4E,r, +O(E&). 7.18 

similarly, 

def J,(P) = 53 ~,r, J,F’,,,) + ok;,). 7.19 

Preclustering 7.20 

Let us turn to the property la). It can be directly utilized to derive an important approxima- 
tion that consists in recombining (groups of) particles of a given tinal state into one provided 
this affects the observables one aims to compute only within specified errors. We call this pre- 
clustering, and it bears a resemblance to the conventional jet algorithms. But there are also 
differences which it is important to elucidate. 

The preclustering is simply a computational approximation trick aimed at reducing the 
amount of arithmetic needed to compute a C-continuous observable by exploiting the property 
of C-continuity shared by all C-continuous observables.’ Its numerical effect, however. de- 
pends on the form of a concrete observable; for some observables it works better than for oth- 
ers. Our predustering has a mathematically well-defined purpose and involves a parameter (see 
below) that ~Gectiy controls the resulting approximation errors. Therefore, all arbitrariness is 
to be judged against the well-defined criterion of whether or not one can achieve the desired 
precision for specific observables using available computer resources. 

The small parameter which the preclustering exploits is the small angle between almost col- 
linear fragments. However, the specific range of what constitutes “small” angles will be seen to 
depend on the energies of the particles. This should be no surprise because the energy depend- 
ence of C-comelators is fixed and known (cf. 5.18). 

Because we will be considering here C-correlators that are uniform functions of energies, we 
can take all particles’ energies Ei to be energy fractions rather than absolute energies: 

Ei tEi/E,,. 

Such an assumption entails no loss of generality. 

On masslessness of pseudoparticles 7.22 
Before we turn to formulas, the following subtlety should be emphasized. The preclustering 

replaces one energy flow (as defined in our formalism) with another object of exactly the same 
type. Therefore, the pseudoparticles that emerge in our case (and that are analogous to the 
protojets of the conventional algorithms) are also to be formally interpreted as massless. But 
one should not try to assign a profound physical meaning to this fact because we am simply 
dealing with a computational trick here. 

On the other hand, in thocmateRti oml algorithms protojets may emerge with non-mm 

’ In fact. experimentalists routinely use a similar preclustering of the raw data except that jet-algorithm-based 
observables ti computed in the end (instead of C-continuous obsewables and using criteria different from the 
optimal one explained below in this section). I thank D.A.Stewan for explaining this to me. 



F. V. R~i,‘,v/,.,easu~ m,,lU~at stn,z,u~~... FERMLAL%PUB-9Y191-~ .._. --- . ..__.. - __...__.._ _..__” ..___.._____________... -___- _______.._..___...._.~~. -- .--.-... --- ----. --- -..-s 

masses. Incorporating non-zero pseudoparticles’ masses within our formalism would be 
equivalent to constructing approximations for an observable not in terms of the same observ- 
able -which is the case that we are considering - but in terms of a different one. This may 
be an interesting option, but we only concentrate on the optimizations that do not’require a 
detailed knowledge of the structure of observable% In that sense, our formulas are universal. 

One also notices that the recombination is defined unambiguously only for infinitesimal an- 
gles between particles (cf. below). The energy and momentum conservation of the conven- 
tional algorithms can be regarded as ways to extend the recombination criteria to finite angular 
separations while preserving maximum information about the event. 

Estimating errors induced by recombinations 7.23 

Let us begin by considering the simplest C-correlators that are linear in energies. This is 
meaningful because the general C-correlators 5.18 can be obtained from these using algebraic 
combinations and appropriate limiting procedures (Sec.5.22). We wilI see that the criterion we 
are going to derive remains essentially the same in the general case. 

Consider the following correlator: 

F(P)=Ci Eif(>i). 

On a state P’ = p @ P with one particle, p, singled out, the correlator becomes 

F(p@P)=Ef(j)+Ci Eif(@i). 

Replace p with two particles pa and pb: 

7.24 

7.25 

F(p,~pb~P)=E,f(~~)+E,f(~,)+Ci E,f(i;). 7.26 

To compare 7.26 and 7.25, consider their difference: 

F(p,~~~~p)-F(p~p)=E,f(~,)+E~f(~~)-Ef(~). 7.27 

At this point, it is convenient to formally extend the function f to non-unit 3-vectors by impos- 
ing the condition 

f(W=f(i). forwi. 7.26 

Assuming that the angles between each of the fragments and the initial particle p are smaIl, we 
are going to Taylor-expand the expression 7.27 in j, and jb around j, using the following 

formula: 

f(~#)=f(~)+A~#f~(~)+~(A~#)*f~(~)+.... 7.29 

(Because one deals with vector arguments here, the products are tensorial.) We obtain: 

W, +Q,-E)f(i) 

7.30 
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Requiring that the lirst two lines nullify, we obtain: 

Ea+Eb=E, 7.31 

Ej=E,j,+E&,. 7.32 

The latter relation cannot be satisfied by three unit vectors -but that is of little import here: 
Fit, the relation is only meant to be exact for infinitesimal angles, and its extension to finite 
angles involves an arbitrariness that cannot be avoided in principle. Second, the trick of &fin- 
ing f for non-unit vectors, Eq.7.28, offers a simple variant of such an extension, and it allows 
one to simply enforce a correct normalization whenever necessary. 

The remainder is bounded by the following expression: 

+[E111~j~,12+~,lAj$2]~ Mf, 7.33 

where Mf 2 0 involves a maximal value of 2nd order derivatives off (we will not need its 
precise form). Notice that 

4 AbG =(j,++. Ajb =-(j, -+ 

Fmally: 

7.35 

Modifications for general C-correlators 7.36 
The above reasoning is extended in a straightforward manner to the case of the general C- 

correlators 5.18. (This is done easiest using the representation 6.7.) One obtains 

IF(p,~pb~P)-F(p~P~l~~~ii~.-~~12~m~Ei~~), 7.37 
k=O 

where My) are constants that depend on second order derivatives off. Because E c 1, this 
reduces to 7.35 (with a different Mf ). Therefore, the form of dependence on energies and 
angle in 7.35 is completely general as expected. 

The “optimal” preclustering prescription 7.38 
Now suppose we wish to simplify computation of some C-continuous observables via reduc- 

ing the number of particles by combining a pair of particles, E,, j, and Eb.fib, into one, E,$. 
From 7.35 one sees that the criterion to combine two particles into one is 

where 
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- 2 A, !! +lp, -pbl = 1 -cosBob, 7.40 

and the parameter ycut effectively controls the error induced thereby. The actual error differs 
from yNL by a factor which is best determined via numerical experiments. 

The energy of the new particle is determined from 7.31. Its direction is found from 7.32 
(with the normalization enforced as described after 7.32). 

Recall that one deals with energy fractions in 7.39 (cf. Eq.7.21). 

Comments on the definition of A, 7.41 

The optimal preclustering criterion 7.39 has been rephrased, as compared with the underly- 
ing inequality 7.35, in terms of the angular separation Aab defined in Sec.4.5. Eq.7.40 involves 
an extension to large errb which in principle is arbitrary, whereas the bound 7.35 was derived 
only for inIinitesimal 8,. The considerations behind the definition 7.40 were discussed in 
Sec.4.5. 

It should be. clearly understood that such an extension, theoretically speaking, can be. chosen 
arbitrarily as far as the preclustering is concerned. Indeed, whereas in the conventional ap- 
proach the radius of jets (or yCu, which effectively controls it) is physically significant (because. 
e.g. reconstructed masses of multijet substates -therefore, masses of new particles - depend 
on it), in our formalism the preclustering is only an approximation trick (e.g. the spectral dis- 
crirnin::tors described in Sets. 10-I 1 will have a bump due to a new particle at the right value 
of invariant mass irrespective of whether or not the preclustering is used). Therefore, if the 
arbitrariness in the definition of the angular separation turns out to be numerically important 
for the chosen yCut , one should conclude that the approximation errors due to the prechrsterin,n 
are out of control and the approximation for that value of ycut simply does not work. 

Another point one should have in view is that the vector norm in the r.h.s. of 7.35 can be any 
vec;or norm, not necessarily the Euclidean one. This means that any alternative A& such that 

c,ALob < Ah < c2Anb, for some q2 > 0, 7.42 

is allowed. The preclustering criterion 7.39 (and also the criteria discussed in Sec.7.47) based 
on such AL instead of A& is equivalent to the one based on Aab but may result, e.g., in a 
faster code (cf. Sec. 13.13). 

Comparison with the conventional algorithms 7.43 
It is interesting to treat the above “optimal” algorithm as a conventional jet algorithm be- 

cause one can use the criterion 7.39 in a JADE-type iterative recombination scheme. (Note, 
however. that a better way is to use the n + 1 variant of preclustering described in Sec.7.47.) 
Various recombination algorithms currently in use were discussed and compared in detail in 
[28]. Our criterion 7.39 directly compares with the JADE algorithm [26] that uses the follow- 
ing criterion: 

Ea% x&b < ycut 1 

and the Geneva algorithm [28]: 

7.44 
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Recall that the energy squared in the denominator of 7.45 was introduced 1281 to avoid prob- 
lems with soft particles encountered by the JADE algorithm; its role is to provide a repulsion 
that ensures, in particular, that no “lumps” (i.e. spurious jets consisting of widely separated soft 
particles) are produced. Since there was no a priory criterion to choose the form of such a 
factor, the squared energy of the pair was taken to match the dimensionality of the numerator. 
Note that we use energy fractions so one can think about the 1.h.s. of the optimal criterion 7.39 
as ma& dimensionless by E,,,, in the denominator rather than an additional E as in the Geneva 
criterion 7.45. 

From the point of view of the errors induced in the “physical information” (i.e. the collection 
of all C-correlators; cf. Sec.5.21). the Geneva algorithm does not err because it overestimates 
the errOrs (E-t < Ee2 for E < 1). But for the same reason, it is not optimal: it is too cautious 
when recombining pairs of soft particles. 

For two soft widely separated particles (cf. sec.2 of [28]) our criterion results in a cutoff of 
the form 

~n(Et,%) - ycut I 7.46 

which resembles the Durham algorithm [27] except that the latter has squares of energy fiac- 
tions. 

Since the C-continuous observables are IR finite, our algorithm does not give rise to IR di- 
vergences if used for jet counting in a conventional way. This can be verified directly (cf. the 
reasoning in sec. 2 of [28]). 

Preclustering ~1 7.47 
Since C-continuity allows fragmentations into any number of panicles, it is natural to extend 

the above preclustering to more than two particles. The modifications of the reasoning of 
Sec.7.23 are as follows. 

One compares the values of C-correlators on two multiparticle states, p@ P and 
(Papa) @ P. One forms their difference and Taylorexpands it in angular variables. One finds 
that the leading terms cancel if: 

E=x, 4, +c, E,& . 
The remainder is bounded by an expression of the form 7.33. From 7.48 one finds: 

+IA$,I’I (E-W’ xmax A 
E2 b ab’ 

One fmds: 

7.46 

7.49 

7.51 
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The corresponding clustering criterion is as follows: 

c 
&W-E,)2 maxA 

0 
$ b ab~YC”l~ 

This is more precise then the following simpler but less optimal version described in [ 181: 

yAnbxC 
E,(E-EJ2 

2 Ycut . 
a E2 

7.52 

7.53 

Note that Mf in 7.51 is the same as in 7.35. Therefore, the numerical value of the cutoff pa- 
rameter here is to be taken the same as in the case of two particles. (For two particles, 
Eqs. 7.52 and 7.53 coincide with 7.39.) 

An even simpler and cruder venion is as follows: 

maxA& 
ab 

xE~~,,,t. 7.54 

Thisisbecause E-E,lE. 
The advantage of the simpler version 7.54 is that it is easy to accumulate the particles to be 

clustered iteratively: One may, e.g., begin with an energetic particle and proceed by adding 
other particles -rejecting particles that are too energetic - unfil the threshold is achieved. In 
the end, one may revert to the mom precise formula 7.53 or 7.51. which may be needed to take 
into account accumulation of errors correctly (cf. the discussion in Sec.755 below). 

The simplicity of 7.54 reminds one of the cone-type algotithms traditionally used in hadron 
collisions (for a review see [lo]). In particular, the quantity ;y A& corresponds to the angu- 

lar diameter of the jet. However, in our case one does not have to worry about overlapping 
cones nor about irregularity of jets (as in the case of recombination algorithms) because the er- 
rors induced by preclustering are under complete control via analytical means, so the issue of 
jet shapes is irrelevant. 

I emphasize that there can be no restriction on the geometric fotm of the cone spanned by 
the particles being clustered as long as the above analytical criteria are met. For instance, two 
particles that are too energetic to be recombined into one can. nevertheless, “attract” all softer 
particles around them even from behind each other and even if the angular distances of the lat- 
ter from the former are much larger than the distance between the energetic particles. The only 
criterion of clustering is the numerical quality of the resulting approximation. 

Lastly, if one attempts to develop a variant of preclustering with more than 1 resulting pseu- 
doparticles (cf. the 3 --f 2 scheme of [61]), one fmds that the optimal variant is when all msult- 
ing pseudoparticles are collinear, which is equivalent to the n + 1 case already considered. 

Accumulation of errors 7.55 
Errors induced 5;’ Several (Say, n) insfaxes of preciusz3ing - a0 matter how my par& 

cles are recombined in each, and irrespective of whether or not the particles affected are pseu- 
doparticles’ -are accumulated. For example, if all n instances of preclustering have been done 

i Note that the allowed n+l recombinations may eliminate the need in iterative preclustering. 



F. v. ‘-m”‘M*asUnng mv’~~.~~ro~~,.~~~~~~~~~~~.~----- ___._.-___._.--__._._ ----56 --- __.. -__-._-_.. _._._. 

so that the error induced by each is - ycuc, then the cumulative error might be estimated by 
- &x ycut . (It might b-e interesting to study this issue in more detail, perhaps via numerical 
experimenting.) 

But whatever law governs the accumulation of errors, the very fact of their accumulation 
implies that an actual preclustering algorithm should, perhaps, somehow take it into account, 
e.g. start with a preset allowance Y > 0 which is decreased after each instance of preclustering 
until it reaches zero. How much of Y is used up in successive instances of preclustering (whose 
corresponding ycut may be all different), is up to the programmer’s ingenuity. Note also that Y 
may be chosen differently for different events (the harder the event for computations, the larger 
Y one may be willing to allocate to it, and vice versa). Optimal criteria for this depend on con- 
crete samples of events. 

Note that the values of yCUt (and y) used in the preclustering should typically be smaller than 
in the case of conventional algorithms. 

Ftily, it should be noted that we have only derived a criterion for an optimal preclustering. 
The actual algorithm should efficiently find the clusters of particles to combine into a protojet. 
The simplest variant is to use the code for a usual recombination (2 + 1) algorithm and re- 
place the criterion by the above optimal one. This has the advantage of simplicity and speed. 
One could also use a more sophisticated scheme similar to [38]. In general, different implemen- 
tations may not be completely equivalent and will probably have to be fine-tuned for a particu- 
lar application. 
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Applications to measuring “number of jets” 8 

There are two main uses for the quantity known as “number of jets” of an event/final state. It 
can be used either to compute relative fractions of events with a given number of jets - the 
observables called n-jet fractions - or as a tag to select events when searching for new parti- 
cles. In this section we derive a special sequence of C-correlators - the so-called jet discrimi- 
nators [15] - that can be used similarly. Their properties will be studied in Sec.9 while an ex- 
ample of their uses as building blocks in mom complex observables can be found in Sec. 13.32. 
Since jet counting depends on the kinematics of the concrete reaction, here we consider the 
simplest case of annihilation e+e- + hadrons with a full 4~ detector. Modifications for hadronic 
collisions are discussed in Sec. 13. 

“Jet counting” with Ccorrelators 8.1 

Understanding the problem 8.2 

We would like to construct C-continuous observables that quantify the qualitative feature of 
final states known as the number of jets. A ‘?et”, qualitatively, is a spray of particles radiated 
within a small solid angle (in a given reference frame) and carrying a substantial fraction of the 
total energy of the event. The conventional approach consists in a straightforward formal&- 
tion of this qualitative definition which results in a use of cutoffs and an integer-valued observ- 
able (the “number of jets”). 

Fti of all, it shouid be emphasized that the “linguistic” restrictions of the C-algebra do not 
allow one, as a matter of principle, to write down an expression for the “number of jets” be- 
cause the latter is an integer number and the only integer-valued C-continuous observables are 
constants on the entire collection of final states. This, however, is in perfect agreement with the 
fact that the “number of jets” is an ambiguous notion for a non-negligible number of tinal 
states. On the other hand, one should draw a distinction between a qualitative feature of the 
physical phenonema one studies and its precise numerical expression in terms of an underlying 
theory. Such an expression need not be a straightfonvard definition of what one feels one sees 
but it must conform to the kinematical (“linguistic”) requirements of the theory. For instance, 
the “position” of an electron is desribed by a vector in Hilbert space - a notion not quite in- 
tuitive but precise. The degree to which one allows oneself to take liberties with kinemati- 
cal/‘Yinguistic” restrictions is inversely proportional to the precision one aims to attain. 

It proved possible to construct a sequence’ of C-correlators of a special form (the so-called 
jet discriminarors [15]) that quantify the “number of jets” without actually identifying individ- 
ual jets. The purpose of the detailed derivation presented below is to present concrete motiva- 
tions for every element of the construction of jet discriminators in order to show that the con- 
struction is essentially unique. (In the simplest and cleanest situation of e+e- annihilation into 
hadrons the qualifier “essentially” seems to be supertluous.) 

Defining multijet states in terms of Ccontinuity 8.3 

An assumption that deserves to be explicated is that an “m-jet state” is one that is “similar 

’ The sequence might be thought of as an infinitely dimensional vector. Some physical quantities are described 
by 4-vectors. some by e-component antisymmetric 4-tensors, etc. The “number of jets” happens to be conectty 
described by au infinite sequence of scalar continuous components. 
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to a state which contains exactly m sufficiently energetic particles with large angular separa- 
tion. One cannot fail to see that the crucial point here is what “similar” means, exactly. It is 
natural to express it in mathematical terms using the C-convergence: at a qualitative level, two 
states are “similar” if they are indistinguishable by calorimetric detectors with poor enough en- 
ergy and angular resolutions. 

Unfortunately, the C-convergence cannot be expressed in terms of a useful distance func- 
tion. Therefore, there is no single numerical criterion to measure the above “similarity”. But 
fortunately, the wisdom of general topology [43] tells us that the most general option to dis- 
criminate the elements with a particular property in spaces with unusual convergences is to 
employ continuous’ functions that take special values (e.g. 0) on those elements. The number 
of the functions used in such a comparison and their form depends on the specifics of the par- 
ticular problem as well as practical expediency. A natural thought would then be to construct a 
function that takes, say, the value 0 on m-jet states, and is appreciably different from zero on 
all states that cannot be described as “similar” to m-jet states. 

Unfortunately, the notion of “m-jet state” is illdefined (if one wishes to avoid cutoffs, as we 
do). But fortunately, a little further thought reveals that the definition of m-jet states does have 
an unambiguous aspect, namely, that a state consisting of exactly m particles cannot have more 
than m jets. The latter property (“cannot have more than m jets”) is shared by all states consist- 
ing of no more than m particles, and the collection of all such states is defined unambiguously. 
Any state that is sufficiently close to this collection (in the sense of C-convergence) shares the 
same property - it cannot have more than m jets (within the precision of “sufficiently”). 

Therefore, the problem of “jet counting” has transformed into that of constructing C- 
continuous functions that take a special value (zero) only on all multiparticle states with less 
than a certain number of particles. 

Among all C-continuous functions, it is natural first to try the basic ones - i.e. the C- 
correlators 5.18 - as candidates for that role. 

Going back for a moment to the conventional jet coupting, one can see that instead of one 
integer-valued function (“number of jets”) one could USL: a sequence of step functions: each 
such function should take the value 0 on all states with less than a certain number of jets, and 
the value 1 on all other states. A sequence of such functions (m = Q,...) would do the job of 
jet counting just tine. The functions we are going to construct can be regarded as C-continuous 
weights that replace such step functions in accordance with the philosophy of Sec.2.5. 

Explicit formulas for jet discriminators a.4 
Consider a C-correlator 5.18 that is exactly 0 on any state with less than m particles. Then ^ ^ 

f,(p,p,...)=O. l-hen f,Ci+.& ,...) should contain a nullifying factor (cf. Theorem 119 in 
[42] which states that if a sufficiently smooth function f(v) is zero on a manifold described by 
the equation cp(v) = 0 then f(v) = cp(v)f’(v) where f’(v) is also a smooth function). We 
choose the nullifying factor to be Al2 =l-~ose,~, an object that has already occurred in the 
study of optimal preclustering, Eq.7.34. 

Thealmve ri f-is a rotati.onaQ~ ir;ariant function that isan&?ic everywhere on 
the unit sphere and is simply connected with scalar products, which makes it a perfect choice. 
It also seems to be the o&y reasonable choice - apart from raising it to some power, a com- 

’ with respect to the concrete convergence defined for the elements of that space. 
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plication so substantial’ that one should have very good reasons to justify it. 
Symmetry requires a similar factor for each pair of arguments off: 

f*f,($,v... &J = n Aijx~,(i,v...&,m), 8.5 
Ei<j-Sm 

where 
Aij = I-co&$ = l-&bj . 8.6 

In what follows it will be important that Aij = A(6,) is non-negative. monotonic and smootbiy 
interpolates between A(0) = 0 and A(x) < +-. 

To fix jm,, it is natural to check out the simplest option first, so set 

Fm=l. 8.7 

Since the perceived jet structure is independent of the energy scale, it is natural to make the 
observable dimensionless by introducing a factor E&y, which is equivalent to using energy 
fractions instead of absolute energies. 

One arrives at the following expressions for the jet discriminators [ 151: 

J,P)=N,&$” C E;,...Eim jm(3;,v-..,jim), jm(jl..... 
i,c...<i, 

j,,= n Aii. 8.6 
1sicjSm 

The summation here runs over all selections of m different particles from all the particles of the 
final state P. The terms with equal angular arguments are absent here as compared with 5.18 
because they are nullified by the A’s. 

N,,, can be chosen so that the discriminators always vary between 0 and 1 (see Sec. 8.12): 

OIJ,(P)<l, forall m and P. 8.9 

For m = I,2 the discriminators arc trivial: 

J,(P)=N,E,;~iEi=ll. 8.10 

J,(P)= NzE~~~i<jEiEj(l-coseV)=--C, 
EL 

where s is the total invariant mass of the final state. In the case of the center of mass reference 
frame, J,(P) = 1. 

Normalization 

The jet discriminators 8.8 are always bounded: 
8.12 

’ from the point of view of analytical calculations. This is because of a combinatorial blow up of the number of 
terms at intennediare stages; cf. the analytical calculation of normalizations in Sec.8.12. 



J,,,(P) I N, E;? (i,~~~...Ei~)),~Y~~~i.(il~...~i.)~C””. 8.13 

The above bound is far from optimal because all A’s cannot reach their maximal value (i.e. 2) 
simultaneously. 

In general, N,,, can only be found numerically because they depend on the geometry of the 
experimental setup (e.g. whether or not one deals with a full 4~ detector, etc.). For the case of 
e’e- + hadrons and full 42 geometry, numeric experiments show that the maximal value is 
reached on the configuration Piy”’ with the energy uniformly spread over the unit sphere (as 
well as on a few highly symmetric configurations; cf. Sec. 8.17). It can be regarded as a limit of 
final states consisting of N particles with equal energy Ei = N-’ uniformly distributed over the 
unit sphere so that xi + N I 

4n s, dji as N + - Then one can choose N,,, from the condition 

J,(P:m) = 1 . 8.14 

The angular integrals arc done using the following formula: 

di (iGl)x...x(j4,,)= 3.5....,‘(1+2&; (~n,~nz)X”.X(~R*t-,~n2t)’ 8.15 

where. the summation runs over all non-equivalent decompositions of 2k objects into k pairs 
(decompositions differing by the order of pairs or the order of objects in each pair are treated 
as equivalent). One finds: 

m 12345 6 

N, 1 2 2$ 36 F w . . . 8.16 

Note that a very large number of terms is generated here at intermediate stages of analytical 
calculations.‘~” 

Some special values 8.17 

To illustrate how the discriminators approach their maximum (= 1). here are the values of 

J$?“‘) on some highly symmebic configurations of particles with equal energies ( n = 4 

corresponds to vertices of a tetrahedron inscribed into the unit sphere; n = 6 corresponds to an 
octahedron; the case n = 00 was defmed in 8.12): 

’ I failed to find~a way to evaluate N, with my copy of FORM-2 1621. 
a I thank B.B.Levtchenko for a numerical check of the results. 



J, J, J, J, . . . 

PFY” 1 0 0 0 0 

Py 1 1 0 0 0 

P;rn 1 1 35 = 0.84 0 0 

Py 1 1 1 $+ = 0.79 0 

Pi” 1 1 1 1 1.. 

. . . . . . . . . . . . . . . . . 

P,$F 1 1 1 1 1 8.18 

(Recall that, up to normalizations, J, and J, are the same as total energy and invariant mass of 
the state, respectively. Actually, J,(P) = 1 in the spherically symmetric case, and the corre- 
sponding column is included for completeness.) The symmetric states have the largest angular 
distances between the particles. The table shows that the uniformity of the angular spread to- 
gether with the uniformity of energy distribution are more important factors for achieving the 
maximal value than the total number of particles. 

Note that the state Py”’ must be considered as having an infinite rather than zero number of 
jets. Note also the following experimental fact: ali global maxima of the jet discriminators (i.e. 
the states on which at least one jet discriminator besides J, takes the value 1) correspond to 

the following eight configurations: the five Platcnic solids (the tetrahedron Pisym, the octahe- 

dron Pip, the cube Pi”, the icosahedron P,?2m, the dodecahedron Pir) as well as the 

sphere PLY”’ and two configurations that can be regarded as degenerate regular polyhedra 

namely, the “dipole” Pi” and the “dihedron” Pep. A failure to include the latter three de- 
generate configurations into the analysis as well as a neglect of relativistic and quantum effects 
might explain the limited (- 5%) precision of dn earlier purely classical attempt [63] to find a 
kinematical explanation of the well-known profound significance of the Platonic solids. 
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Understanding jet discriminators 9 

For definiteness, we consider here the standard jet discriminators exactly as defined in 
Sec.8.4 for 4x geometry and the parametrization in terms of two angles (the unit sphere; 
modifications to the cylindrical geometry of hadron-hadron collisions will be discussed in 
Sec. 13). But we allow the total 3-momentum of the states to be non-zero. The qualitative 
features observed in examples remain valid in more general cases. 

Qualitative behavior of J, 9.1 

We will first explain how to obtain crude estimates for jet discriminators, and then discuss in 
detail various features of their qualitative behavior. Examples for states with a few particles are 
presented in Sec. 9.6. 

Estimating J, via a crude clustering 9.2 

The jet discriminators - as any other C-correlators - are fragmentation invariant 
(Sec.6.6). Therefore to obtain a rough estimate for the values of the discriminators on a given 
final state it is sufficient to replace each jet with one particle carrying the same total energy and 
going in the direction of the jet and drop soft particles. (A more refined version of this proce- 
dure can be used to optimize computation of C-correlators from data; see Sec.7.) 

A typical picture of values 9.3 
The values of the jet discriminators J, for a typical tinal state P with 3 distinct jets are 

mugi-dy as follows : 

J, 

0 12345 m 9.4 

The white circles represent the values of discriminators for the 3-particle state PO obtained by 
recombining particles from each jet into one, as described in Sec. 9.2. P,, can be interpreted as 
the parton state prior to hadronization; then P is the corresponding hadronic state. As a rule, 
J,,,(P) > J,,,(Po) as a result of fragmentation. The C-continuity ensures that the closer (in the 
sense of C-convergence) the final hadronic state to the underlying parton state, the less the 
upward drift of J,. 

In particular, J, - 0 for m larger than the perceived number of distinct jets; the non-zero 
values (the tail at large m) are due to fragmentation (almost collinear radiation from hard par- 
tons as well as “drops of glue” between jets). 

Note, however, that since the maximum is reached on some highly symmetric configurations 
(cf. 8.17), ftigmentation of the latter results in a downward (rather than upward) shift of the 
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values of J,. But such cases PIE highly exceptional. 

Understanding the decrease at large m ’ 9.5 

The monotonic decrease at large m is explained as follows. Let M and 0 ix, respectively, 
the perceived number of distinct jets in a state and their average (small) angular width. The 
state may also contain a “soft” component that consists of particles with small total energy 
esoft spread between the jets. Then one can see from the explicit expression 8.8 that for 
m > M, each term in the sum for J,,, is suppressed either by additional powers of 0’ and &sdt 

(cf. the examples below). The larger m, the larger the number of such factors, which explains 
the decrease. 

Numerical experiments show that the decrease of J, is a universal feature even for 
mS M.“‘“’ 

Simple examples 9.6 

As explained above, up to a small upward shift and a non-zero tail at large m, the values of 
J, are roughly the same as for the states with particles clustered into the corresponding jets. 
Thus, it is useful to consider states with just a few particles, each representing a jet, which we 
do below. One-jet states being too simple to be interesting, we begin directly with two jets. 

Two pure jets 9.7 

Here one deals with two hard widely separated particles: 

P2h ={&4;52.$2}. E1,2 -0, At2 >>O. 

Our usual notation is Aij = I- c0sf3~ = I- jiij. Due to normalization of the jet discriminators 
all energies are to be compared with E,, , the total energy of all particles of the event. 

One has: 

4% J2(P2,)=4- 
G, 

A,2, J,(P,,)=J,(P,,)=...=O. 9.9 

One can see that the conditions 9.8 that ensure that we deal with two jets are equivalent to one 
condition, namely, J,(P,,,) >> 0. 

Vice vetsa, it is sufficient to require 

J,(Pz,) < ~cut 9.10 

with a small ycur to obtain a state with one jet. (For a comparison of our formalism and con- 
ventional jet algorithms see Sec.7. Here we only note that the resemblance of the above to the 
Geneva criterion, Eq.7.45, is due to the fact that E,, 2 E, + E, in this simple case.) 

’ I thank B.Straub for this question. 
:I thank B.Levchenko for numerical checks of this property. 

The relationship between jet clustering algorithms and event shape measures, including the monotonic@, is 
discussed in [65]. 
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Adding one soft particle 

Here one deals with a state 

P 2h+lr = ‘2h @+3.i3}~ &3 << &,2 I 

that can be. shown as follows: 

“‘y, 

Onehas(Ehard=Et+E2): 

9.11 

9.12 

9.13 

ELi J&h+ls) = J2(&)- 
EZ +%(EA3 + Wd 

erd 
J3(p,,+,,)=$J,(p,h)X- 

x %43*23 

ex 40, ’ 

Jm(P2,,+,s) = 0, m 2 4. 9.16 

9.15 

Eq.9.14 illustrates the fact that one can take into account soft particles via an expansion in 
their energy (cf. Eq.9.21 and Sec.7.4). Eq.9.15 shows that if the soft particle becomes almost 
collinear to any of the hard ones then the testriction on its energy is relaxed (as A$ without 
causing J, to increase. 

For completeness, here is the expression of J, for a state with exactly three hard particles: 

9.17 

2 hard + 2 soft particles 

As a further example, add another soft particle: 

P 2h+2s=P2he{E3,1j3;E4.1j4}. &3,4 <<E,,2: 

9.18 

9.19 

Consider again the most interesting case of the third discriminator: 

erd J3(P2h+2s) =~J;!(P&+- 
Et% 

x ~3A1343 +W1424 

E 
+ o(E2). 

tot 

9.20 

9.21 
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This expression should be considered in view of what was said in Sec.9.2. In particular, we 
wish to see whether the pair of widely separated soft panicles could imitate a jet by pushing 
the value of J3(P2h+2r) well above 0. Comparing 9.21 with 9.15 and taking into account the 
fact that Aij I const, one can see that this does not occur as long as the total energy fraction of 
the soft particles remains bounded by a small value. 

Jet discriminators never see spurious jets 9.22 
This issue was discussed in the literature [29], [28] in connection with the fact that some re- 

combination algorithms (e.g. JADE) suffer from the problem of counting “lumps” instead of 
jets. A lump is a state consisting of soft particles with large relative angles but erroneously 
identified as a jet. It is interesting to consider whether the problem of lumps reemerges in the. 
context of jet discriminators (and C-correlators in general). If this were so, then the values of 
C-continuous observables would be affected by “lumps” in a numerically significant way. 

Recall that the energy dependence of C-correlators in general -and the jet discriminators in 
panicular - is analytic, which means that an expansion in powers of soft energies is always 
possible. Moreover, it is always possible (cf. the examples 9.14, 9.15, and 9.21) to obtain esti- 
mates for the terms that are linear in energies of the soft particles (as well as for higher terms) 
by a power of E,~~ (the total energy of soft particles) times a factor that is independent of the 
geometry of the state. We see that the problem of lumps in the context of C-correlators re- 
duces to that of determining a correct measure of “softness”. The latter turns out to be given 
by the total energy fraction of the soft particles: The values of C-correlat& are guaranteed (by 
their C-continuity) to remain within a given small error interval if the total energy fraction of 
the soft particles that are added to (or eliminated from) the state, is bounded by the corre- 
sponding small value E. 

Width of jets’ 9.23 

The problem of the width of jets in the conventional approach arises due to the fact that ob- 
servables such as mass spectra of multijet substates depend on the control parameters of jet 
finding algorithms which (parameters) correspond - directly or indirectly - to the angular 
width of jets. Since in the present formalism all such observables are redefined in such a way 
that the intermediate representation in terms of jets is avoided, the issue does not emerge in 
such an interpretation. Nevertheless, as a further example of expressive power of the C- 
algebra, it is interesting to find a C-continuous measure for what could be called “width of 
jets”. 

The preceding examples motivate the use of ratios of jet discriminators for that purpose. In- 
deed, consider the ratios 

9.24 

From the explicit expressions 8.8 and the_examples above one can see that if there are M I m 
distinct jets in the event then the above ratios are suppressed by powers of angular distances 
squared between particles in the same jet, and/or by powers of energy fractions of soft parti- 

’ I thank E. Kushnirenko for suggesting this problem. 
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cles. The latter fact together with the dependence of the ratios on the global geometry of the 
event does not allow to interpret them straightforwardly in terms of average width of jets.’ 
L+zamicaf width, therefore, is a better name for such observables. Their concrete form is cho- 
sen solely from the consideration of simplicity (one might e.g. consider taking square root of 
the r.h.s.). 

The averaging over events is done after evaluating the ratios, which ensures that (W,,,) carry 

new information as compared with the jet discriminators (Jm). In particular, the sensitivity of 
(Wm) to hadronization is different. 

Jet discriminators vs. jet counting 9.25 

The conventional jet counting assigns an integer number of jets to each event and classifies 
the events accordingly. Fix a muhiparticle state P and consider any jet counting algorithm A 
that produces an integer number of jets N,(y,,,;P) for each y,,t; NA(ycU,;P) should de- 
crease monotonically as ycut + 0: 

I 
> 

&tn J 9.26 

(The hashed sreas correspond to experimental and theoretical uncertainties.) One sees from the 
figure that one could, in theory, restore a sequence of jet discriminators J;(P) similar to 
J,(P). Therefore, the information contents of J;(P) and NA(ycut;P) for one event are es- 
sentially equivalent. The difference emerges when one performs an averaging over many events 
and takes into account errors (Sec.9.28). 

It is, of course, hardly possible to fmd simple expressions for J;(P) for the popular algo- 
rithms. Our J,,,(P) are. singled out by the transparency of their analytical structum. 

’ Note that there is actually no pint in ttying to reproduce some arbitrary - however visual - definition of 
“jet width”. Human eye was created by Nature for purposes other then studying multip.utick~systems. %ysical 
meaning” is not the same as semiclassical visualization. The correct apparatus of “vision” in high-energy jet 
physics is C-comlators. This also answers an objection sometimes raised that a jet discriminator takes different 
values on different states that “apparently” have the same number of jets. Just because one can “see” that the 
states have the Same “number of jets”. can hardly IX regarded as a truly physical reason to count them with the 
same weight in an observable that is supposed to be sensitive to ‘jettiness”. 
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Counting jets with J, 9.27 

If the physical contents of the conventional jet counting and the discriminators are equiva- 
lent, then it should be possible to use the latter for jet counting of a conventional kind. Let us 
discuss this briefly. Actually, it is interesting to consider a jet-counting-type procedure not for 
its own sake but rather in connection with the composite observables discussed in Sec. 13 as an 
auxiliary tool for their approximate computation. 

Recall that the state P contains exactly M particles (up to exactly collinear fragmentations) if 
and only if J,(P) = 0 for all m > M but not for m I M . This follows from the construction of 
the discriminators J,. Therefore, J,,,(P) >> 0 indicates that there are no less than m jets in P, 

while J,(P) - 0 implies that there are. less than m jets in P 
Due to fragmentation one has to introduce a small “resolution parameter” ycU, > 0. Then the 

state P is said to have M jets if J,(P) < y,,, for m= M+ 1 but not for ml M (cf. Rg.9.4). 
The jet counting now proceeds in a sieve-like mannei: one first computes J,(P) (in the center 
of mass frame one starts with J,(P) because J,(P) = 1). If J,(P) < ycut then P contains just 
one jet. Otherwise one computes J,(P). If J,(P) < ycut then one deals with two jets.. . etc. 

In general there is no reason why the cutoff should be the same for all m, so one would (and 
probably should) use a sequence of cutoffs ycuLm - i.e. a separate parameter for each m. 

instability of conventional jet countinn 9.28 
Fig.9.26 is an illustration of the difference with respect to experimental data errors and the 

unknown higher order corrections between the conventional jet counting, on the one hand, and 
the jet discriminators, on the other hand. (From the discussion in Sec.9.25 it is clear that our 
conclusions will be valid for any jet counting algorithm of a conventional type.) Suppose the 
errors are purely statistical and distributed with a given variance. In the case of jet dlscrimina- 
tors, if the statistics is increased, the statis:ical error of the results goes to zero. 

The conventional jet counting corresponds to putting events into different bins depending on 
their jet number. Due to errors, some events would be assigned a wrong number of jets and go 
into a wrong bin. Therefore, each IG would have a certain fraction of events from other bii 
depending on the width of the error intervals only - increasing the statistics cannot help. 
Thus, a statistical error is transformed into a systematic one. Although such a transformation 
occurs for any non-linear function of a random variable, the analysis of Sec.2.5 shows that the 
effect is expected to be alleviated in the case of C-correlators as compared with the discon- 
tinuous mappings of conventional algorithms.” 

Note that changing the jet resolution parameter ycUt does not help one to get rid of such a 
smearing. 

Lastly, the conventional jet counting is particularly sensitive to the errors at large m/small jet 
resolutions. One source of such errors is the so-called Sudnkov radiation of almost collinear 

’ Following the custom-of giving jet countinga&ittas ge2grapbic names (Geneva. Dwham). the ptucedw 
being described was called Moscow sieve in [ 161. 
’ It was noticed by F.Dyda!s that for jet discriminators. the energy factors in each term in the sum are independ- 
ent measurements from independent detector modules, and their errors are also independent. As a result, there 
is no systematic shift due to nonlinearity with respect to individual energy measurements. The property is also 
true for the C-cot-relators from which the spectral discriminators are built (see below). 
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partons. The above analysis suggests that the importance of Sudakov effects within the &me- 
work of the conventional jet counting is an artifact due to the instability of the latter. 

Jet discriminators vs. njet fractions 9.29 

Recall the interpretation of continuous observables as weights measuring the content of a 
particular physical feature in final states (Sec.2.6). Also recall that J, is a continuous analogue 
of a step function that would take the value 0 on final states with less than m jets and 1 other- 
wise. It follows that the average values of J, over all events is naturally interpreted as the 
“weight” of the > m-jet component in the entire ensemble of fmaf states. Then the average vaf- 
ues (Jm) directly RPI~C~S &eu +dmt @+.... 

Note also that the quantity &,(J,) is naturally interpreted as average multiplicity ofjets. 

Take a Break... D 
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Applications to mass measurements. 
Simplest spectral discriminator 10 

In the preceding sections we have constructed a correct numerical description of the feature 
of multihadron ftnal states usually referred to as the “number of jets”. The description involves 
only continuous shape observables from the C-algebra (the sequence of jet discriminators 
J,. m = 1,2,3...) while identification of individual jets is avoided. Yet we have seen that the 
physical content of the new observables remaines the same as in the case of the conventional n- 
jet fractions. What did change was the mathematical expression of that physical content. 

Now we are going to perform a similar transformation for the other important class of appli- 
cations of jet algorithms, namely, searches for new particles based on studying invariant masses 
of multijet substates that resulted from the decays of those particles. We are going to reexpress 
in the correct language of C-algebra the observables such as invariant mass distributions of n- 
jet substates. Needless to say, identification of individual jets will be avoided. 

In this section we defme and study in detail spectral discriminators that accomplish that task 
in the toy model of a particle decaying into one jet and, as an immediate extension, in the more 
realistic case of decays into 1 jet + “muon” (Sec. 10.30; by “muon” we mean any particle that 
can be reliably indentified, using calorimeters or not, including its energy and direction). A 
generalization to the case of multijet substates and the corresponding computational proce- 
dures wi!l be described, respectively, in Sets. 11 and 12. 

1 -jet spectral discriminator 10.1 

Let us begin with a very simple situation where one studies masses of just one-jet substates. 
Much of the reasoning will remain the same in the general case. 

Suppose there is a particle X that decays into one jet. Then the invariant mass of the parti- 
cles constituting the jet is equal to the mass of X. For simplicity, assume first that X is the only 
particle produced in the collision. Then the final state consists of just one jet from X. How can 
one determine the mass of X using the tools we have at our disposal? 

We have seen (Sec.5.25) that to select a substate from a final state within our formalism one 
uses so-called filters - continuous functions interpolating between 0 and 1 in different parts of 
the unit sphere. For each filter 0 one obtains a substate 0 0 P. and evaluates its invariant mass 
S(@oP), Eq.5.28. (It is convenient to say in such a case that one uses a mass &rector de- 
scribed by the filter a. Since one can analyze other properties of the substate selected by the 
filter, one can talk about, say, &-detectors, J3-detectors etc.) 

Elementary mass detector 10.2 

In order to be able to select the jet substate, consider a mass detector centered at the point i 
with angular size O(R) (which we measure in units of the angular separation A; cf. Secs.4.5 
and 7.41). The corresponding filter is defined as follows: 

Q4;R(j)=Wqp/W, 10.3 

where Aw is the angular separation between the directions i and i, 



O(d) = 1 if dsl, 
= 0 if d>2, 
= 2-d otherwise, 10.4 

and the factor 2 is introduced into the r.h.s. of 10.3 to make R vary between 0 and 1. 
The continuous linear interpolation between 1 and 0 in 10.4 regulates the cutoff in accor- 

dance with the philosophy of Sec.2.15. The concrete form is chosen from considerations of 
simplicity. Note that for R = 1 the filter is identically equal to 1: @qiR=l(i ) E 1. 

One can, of course, determine the mass of X by simply looking at an event, seeing what the 
position and size of the jet are (i.e. 4 and R). putting the mass detector described by 10.3 over 
the jet, after which one obtains the invariant mass. But such a procedure involves a step that 
cannot be expressed in the language of C-observables; namely, there is no recipe to choose one 
position and size for the filter from the family 10.3. 

Anyhow, choosing one such filter involves a comparison berween all filters. Therefore, 
consider all filters 10.3, and for each position G and size R. compute the invariant mass ac- 
cording to 5.28: 

S(q^.R)=S(QRoP)>O. 10.5 

Let us examine the properties of this expression as a function of 4 and R in order to determine 
what sort of information it can yield,. 

For all mass detectors that cover the jet completely, S(q^,R) is the same and equal to the jet 
mass. Tbis can only occur for R larger than the jet’s size. The larger R. the larger the number 
of the positions 4 for which the measured mass is equal to that of the jet. On the other hand, 
for R smaller than the jet’s size, the detector and the jet overlap only partially, and S(q^,R) 
yields values that am spread below the jet mass in a more or less continuous fashion. 

Definition 10.6 
We are thus naturally led to consider the distribution of the values of S(q^, R) over the real 

half axis parametrized by a variable, say, s. A straightfonvard way to do so is to consider the 
following expression: 

PIjet(S;R) E Z-‘Jdi 6(s-S(i.R)), 10.7 

which we call one-jef spectral discriminator. 
The dependence on R carries important information about the width of the jet, so it would 

be a good idea to leave it as a free parameter - one can always integrate over it later. (Notice 
certain parallels between the above logic and the cone-type jet algorithms. For a more detailed 
comparison see Sec. 11.25.) 

It is convenient to choose the normalization in 10.7 so that 

In the spherically symmetric case 2 =4x. 
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Simple properties of p1 jet(~;R) 10.9 

For brevity, we will be writing p(s; R) = p1 jet (s; R) in what follows. 

Small mass detector (R--f 0) 10.10 

IntinitesimaUy small mass detectors measure intinitesimal mass so that for R--f 0 d the 
spectral weight is near the origin: 

10.11 

Large mass detector (R + 1) 10.12 

When the mass detector covers the entire sphere - which corresponds to R + 1 - all the 
spectral weight is concentrated at the point s = S,, , the total invariant mass of the state: 

10.13 

Flow of spectral weight 10.14 

Obviously, the regions of smaU and large R are physically uninformative. But as R varies 
from 0 to 1, the spectral discrhninam r undergoes an evolution that can be described as a fiow 
of spectral weight from s = 0 to s = S,,. Indeed, the normaliLa;lon of the spectral d&&mina- 
tor 10.8 does not depend on R, and each position of the mass detector contributes an intini- 
tesimai unit of spectral weight the total number of such units being fixed and independent of 
R. As R increases a little, so does, in general, the mass measured by the mass detector in the 
same position. This means that the intinitesimal weight from that position is shifted a little to- 
wards higher s. Uhimately, all the spectral weight concentrated initially at s = 0 is collected at 
the point s = St,,, . But what happens in between? 

We wilI see that localized clusters of particles in the event manifest themselves as ‘barriers’ 
for the flow of spectral weight that take a form of isolated &functions (S-spikes) in spectral 
discriminators, but first we consider the opposite extreme case. 

Uniform distribution of energy over the sphere 10.15 

In this degenerate case the spectral flow is simple. In any position, the mass detector nmsas- 
ures the same invariant mass, so that all spectral density is localized at the same value s = S, 
which is a monotonic function of R. The spectral flow in this case is visualized in Fig.10.16. 

p~zoI-rI :m , 

0 SR s s tot 0 SR S tot s 10.16 



The left figure shows three positions of the S-spike corresponding to three values of R; the 
height of the &spike does not change as R varies. The right figure shows the trajectory of the 
S-spike on the s-R plane. 

On the other hand, for a non-uniform energy distribution different positions of the mass de- 
tector measure different values of s for a fixed R. Therefore, the spectral weight is spread over 
s for a fixed R (a horizontal spread along each line R = const in the right figure in 10.16). In 
what follows we study the qualitative features of spectral flow with emphasis on the case of 
“extremely non-uniform” energy distribution. i.e. when the linal state contains a few clear well- 
separated jets. 

Spectral density is localized within 0 <s I SF 5 S,, 10.17 

This is obvious. Moreover, the boundary value sRmax monotonically increases with R. 

Zero-mass &spike for 0~ R c 1 10.18 

This is a simple illustration of some of the features encountered in less trivial cases. 
If R is small enough, there will be many positions $ of the mass detector where it will meas- 

ure zero mass-because the mass detector will be covering just one or no particles. Denote as 
f# the collection of all such positions, and let @I be its normalized surface: 

10.19 

If I@l> 0, the dis criminator p(s;R) contains a contribution of the form I@I 6(s). It is clear 
that the coefficient decreases, 

Ino”1 --f 0, 10.20 
R-1 

monotonically for all R, starting from the initial value 1. 

Jats and S-spikes 10.21 

Events with a single jet 10.22 
Suppose the event contains just one jet of particles. If all particles are strictly collinear then 

mass detectors always measure zero mass, and p(s;R) =6(s). Therefore suppose there is a 
non-zero angular spread of particles of the jet. Its invariant mass Sj is the total invariant mass 
of the state S,,. If the mass detector is not large enough to cover the entire jet then the mass 
of the latter will be underestimated in all positions of the mass detector, and the spread of 
p(s;R) does not extend far enough to the right to reach the boundary s = Sj. 

But it comes closer as R increases and reaches s = Sj when R reaches a critical value R; 

(which roughly corresponds to the angular size of the jet). At R = R; there is just one position 
of the mass detector when it measures the correct mass. 

Once R passed the critical value, there will be many positions (around the jet; the wider the 
mass detector, the larger the number of such positions) the correct mass is measured. Let RT 
be the part of the unit sphere consisting of all positions of the mass detector in which it meas- 
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ures Sj, Then for R < R; the spectral discriminator contains an isolated &function, 

Ifq G(s-sj). 10.23 

The weight lfi~l (= normalized surface of RT) grows monotonically from 0 to 1 as R varies 

from R; to 1 while the position of the spike on the s-axis does not change and no spectral 
weight moves above it. 

The evolution of the spectral discriminator in this case as a function of R can be visualized as 
in Fig. 10.24. 

10.24 

The fat vertical lines represent the S-spikes. The shape of the continuous component depends 
on the distribution of energy within the jet. 

Events with several well-xparated jets 10.25 

Let the index j label the jets of the event, so that Sj are their masses. The situation is similat 
to the single jet case in the sense that a contribution of the form 10.23 will show up for 
R > R;. However, since there am other jets in the event, then starting from some value RT 
(dependent upon the distance from the jet j to other jets) there will be fewer positions in which 
the mass detector covers only the jet j, and there will also be an increasing number of positions 
in which the mass detector feels particles from other jets and measures masses larger than Sj. 

This means that for Rj 2 Rj me spectral weight accumulated at s = Sj will start to spill over to 

the right from that point. Fmally, them will be another critical value Rf such that for R > RT 

the mass detector is too large to cover only the jet j - then the &spike at s = Sj completely 
disappears and all its spectral weight is pushed above its position (cf. Fig. 10.26). 

10.26 

The two left figures show two points in the evolution of the spectral discriminator. The right 
figure shows the spectral flow as a density on the s-R plane. The vertical fat line represents the 
S-spike; its variable width corresponds to IS2yI, the size of the coefficient of the &function. 
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If there occurs an overlap of a few &spikes, the picture will be more chaotic. This may often 
happen in the l-jet case because all jets may be expected to have roughly the same size deter- 
mined by the dynamics of hadronization - but not in the case of > 2-jet substates whose in- 
variant masses are scattered over a much larger interval. 

&spikes corresponding to groups of jets 10.27 

As the size R of the mass detector is increased, it may cover more than one jet. Such a clus- 
ter of jets will also show up as a &spike in p(s; R) - but for larger R than for individual jets. 

It is not difficult to realize that choosing a better shape for the mass detector (e.g. a ‘sum’ of 
two elementary detectors FL-~. 11.15; cf. Sec. 11.14) would allow one to focus much better on 
clusters of jets - and therefore on particles that decay into jets. This is exactly the idea behind 
the definition of more complex spectral discriminators in Sec. 11.13. 

Spurious h-spikes 10.28 

In certain exceptional ideal situations (e.g. a wide jet with energy uniformly distributed over 
the jet cone) the mass detector for smaller R may have a freedom of movement within the jet 
while measuring the same mass (which is a fraction of the jet mass Sj and approaches the latter 

as R + Ri from below). Then there will be a spurious &spike. Such exact spikes, however, 
are practically improbable and should rather be expected to materialize as an enhancement ad- 
vancing towards Sj from the left for R 5 Ri. 

Minijets will be represented by minispikes for small values of R. 

Summary. Evolution of a &spike 10.29 

We have seen that the presence of a well-separated jet in the final state is manifested in the 
spectral discriminator as a &functional contribution (S-spike) with a specific dependence on R. 
This dependence can be visualized as a flow of spectral weight as R changes. The flow is in the 
direction of larger s. The jet corresponds to a barrier for the spectral flow at s = Sj. 

The relevant parameters are the jet’s invariant mass Sj and the three values R; 5 R,’ 2 Rf 

(cf. Fig. 10.26). As R approaches Ri from below, the continuous component of the spectral 

density extends to the right and approaches s = Sj. When R passes RI. there develops a 6 

spike at s = Sj, and the spike increases as R increases from R; to Rf - the spectral weight 
accumulates at the barrier. 

When R exceeds Rlf , the accumulated spectral density spills over the barrier and begins to 
spread continuously to the right of the barrier while the &spike at s = Sj shrinks. At last when 

R passes Rf. the E-spike at the barrier disappears and is replaced by a distribution above 
s=sj. 

The characteristic form of the &spike (shown as a density in the rightmost figure 10.26) is 
expected to persist in the more general cases of spectral discriminators for multijet substates 
where its position will correspond to invariant masses of multijet substates. 
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Realistic example: X + jet + “muon” 10.30 

This case is actually very similar to the simplest l-jet spectral discriminator. Suppose the 
particle X decays into one jet and a muon l.t. (By “muon” we mean any particle that can be re- 
liably indent&d, using calorimeters or not, including its energy and direction.) Let Eu.&, be 
the muon’s energy and direction. The muon is treated as a non-calorimetric “external parame- 
ter” (recall the remarks in Sec.4.8). It is sufficient to make only one change in the formulas of 
Sec. 10.1, namely, for each filter one should “measure” the total invariant mass of the hadronic 
substate selected by the filter (as usual, the hadrons’ energies Ej enter all expressions with the 
weights @4.R(bi)) and the muon - irrespective of whether the muon’s direction is covered 
by the filter or not: 

+2Ep c @Q;R(@ii)XEi(l-~p~ii). 10.31 
ISiSN 

Then one defines: 

Pljet+p(S;R) Z Z-’ d J 4 +Gj,R)). 
Because the stmcture of this expression is similar to 10.7, the only difference from th,! Ample 
l-jet casei is that the position of &spikes is shifted to higher s. The characteristic shape of the 
density distribution in the rightmost figure 10.26 is not affected. 

Smearing and accumulation of S-spikes 10.33 

In actuality, the &spikes from X’s decays will get smeared into a more or less wide bumps 
for various reasons (e.g. averaging over all final states and non-zero width of the par5cles that 
decay into jets; overlaps of &pikes; the numerical procedures described in Sec. 12 that squire 
one to deal with specially chosen continuous replacements for exact spectral discriminators). 
But apart from non-zero width, the qualitative behavior of the smeared &spikes is expected, 
due to C-continuity, to retain a resemblance to the right figure in 10.26 as long as there re- 
mains a resemblance to the ideal final states for which the behavior of E-spikes was established. 

Suppose now the sample of events one studies contains both QCD background jets and jets 
from the decay of X. (The reasoning is the same whether one considers the decay into just one 
jet or jet + “muon”.) Then averaging of the discriminator over all events results in an accumu- 
lation of &spikes from X at about the same value of s while the background jets are spread in a 
more or less uniform fashion over a wide interval of s. Therefore, the signal from X will appear 
as a bump against a continuous background. To enhance the signal, one may integrate over R 
but then the potentially important information would be lost (the two tails in the right figure in 
10.26). Whether or not the characteristic S-shaped density distribution on the s-R plane will be 
preserved after averaging, depends on how~clean and well-isolated the jets from X are, etc. 

i apart from the-unphysical region of very small R which is MI for an interested reader to investigate as an ex- 
ercise. 
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General spectral discriminators 11 

In Sec. 10 we have studied the simplest spectral discriminator for l-jet substates, 
p(s;R) = pI jer(~;R). We have found that, for a single event, it may contain isolated 6 
functions (&spikes). Each such &spike corresponds to an isolated jet - or a cluster of jets if 
the &spike occurs for larger R. We have also observed that modifying the configmation of the 
mass detectors employed should allow one to focus better on multijet substates. The purpose 
of this section is to discuss such modifications in more detail. First in Sec. 11.1 we consider a 
general definition of spectral disc&Gnat ors which is a direct extension from the l-jet case. 
Then in Sec. 11.13 we present a simple concrete version for n-jet substates in the spherically 
symmetric case of e+e---t hadrons. Modifications for hadronic collisions will be considered in 
Sec. 13. 

Mass detectors and spectral discriminators 11.1 

One considers a family of filters a., describing a family of substates Qu 0P (the continuous 
parameter y describes the configuration - size and shape - of the filters; in general, y con- 
tains several scalar components, see examples below). Each filter o7 is thought of as conz- 
spending to an ideal mass defecror that measures the invariant mass of the substate it selects, 
SC@, 0P); cf. Eq.5.28.’ Then one constructs, following the pattern of Sec.5.35, a differential 
observable with respect to the invariant masses: 

p(s;P)=Z-‘ldy +-S(Q,oP)). 11.2 

This is a continuous sum of &functions and does not, in general, reduce to an ordinary func- 
tion (Sec. 11.11). 

Observables 11.2 wdl be referred to as spectral discriminators. Their normalization can be 
defined so that 

c- cLTp(s;P) = 1. 11.3 

Changing the spectral variable 11.4 

If one chooses to work with true masses M = & instead of s, the &function in 11.2 is 
transformed as follows: 

6(s-S(~r”P))=(2M)-‘6(M-~~). 11.5 

On the other hand, spectral discriminators are measures with respect to s and one should take 
into account a Jacobian: 

11.6 

’ Note that one can study characteristics of multijet substates other than masses in a completely similar manner. 



The net effect is that the extra factors cancel out: 

P(M;P)=Z-‘jdy “(M-~~~. 11.7 

One may wish to make a non-linear change of the variable so as to focus better on a particu- 
lar range of s. This is because the algorithms described in Sec. 12 use a uniform discretixation 
of s aad a non-uniform discretization can be best achieved via a non-linear change of variable. 

Continuous component of p(s;P) 11.6 

Recall that yin 11.2 is a continuous parameter that describes the shape (configuration) of the 
filter Q,(b). In general, y has several scalar components, and runs over a multidimensional 
manifold r (e.g. a direct product of unit spheres etc.; cf. 11.14). To study the structure of 11.2 
consider the equation 

s=S(P;Q,) 11.9 

with given fixed s and P, and y the unknown. 
In a generic case, its solutions with respect to y form a hypcrsurface I, in r. For such s, 

p(s; P) is an ordinary function, and its values can be represented in the following form: 

p(s;P) -&PC IV,s(P;@,)/-’ , 11.10 

where da is the inhnitesimal element of hypersurface (in natural units), and V, is the corm- 
sponding gradient operator. The formula means that the larger r, and the slower the variation 
of S(P;O,) on y E r,, the larger p(s;P). 

&functional components of p(s;P) 11.11 

If, on the other hand, the values of y that are solutions of the equation 11.9 for s = s’ consti- 
tute a part r’ of the manifold r with a non-zero hypervolume 

II-‘~$,~~ dy >O 7 

then p&P) contains a contribution jrls( s-s’). Such a situation occurs, e.g., if for some 
value y = y. the mass detector described by Qro completely covers a cluster of particles (i.e. 

(Pyo (ii) = 1 for each particle of the group), and for small variations of y in all directions 

around y. the cluster remains covered so that the measured mass S(P;O,,) stays the same. 
There is little one can say a priori about the continuous component - its shape depends on 

the details of shape aad geometry of the final state. But about &spikes, a qualitative informa- 
tion can be obtained by purely analytical means - exactly as was done in Sec. 10: AI1 the con- 
clusions about &spikes and their evolution made there remain valid in fhe general case. In 
particular, the characteristic shape of the density on the s-R plane (Fig. 10.26) persists in the 
general case (cf. below Sec. 11.24). 



Multijet spectral discriminators 11.13 

Composite mass detectors 11.14 

A composife mars defector can be regarded as consisting of two or more elementary mass 
detectors described by 10.3. For instance, consider two elementary mass detectors of the same 
size R, centered at it and &, respectively. The two functions are @4,;R($) and QqsiR(j). 

We combine them as follows: 
. . ^ 

~~,~*;R(P)=~~,;R(p)~~~*;R(P). 11.15 

The operation @ takes two or more numbers as operands, and its exact form is not important” 
as long as it has the following properties: 
(i) continuity (the result is a continuous function); 
(ii) it should give the result from the interval [O,l] if the operands are from that interval; 
(iii) commutativity (the result is independent of the order of operands). 
The simplest choice is: 

a @b = max(a,b). 

One can combine more than two mass detectors, e.g.: 

11.16 

11.17 

with the result independent of the order. 
So, a composite mass detector is characterized by: 

(i) II, the number of its constituent elementary detectors; (heuristically, this corresponds to 
the number of jets in the substates the detector probes) 
(ii) their positions (configurafion) i,, ___ ,I. This is y in terms of Sec. 11.1 and the manifold r 
is the direct product of n unit spheres; it can be parametrized e.g. by 2n angles; 
(iii) their size R”’ (it is not included it into “configuration” because we wan! to keep it a free 
parameter); 
(iv) the filter: 

11.18 

Example. Spectral discriminator for 2-jet substates 

The following filter selects two clusters of particles: 
11.19 

Evaluate 

11.20 

ii To insist on a “physical” interpretation here would be inappmpriate. 
’ We only consider the case when all elementary mass detectors constituting a composite one have the same 
size. The complication of different sizes would have to lx well justified. 
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S(~~,&2;R)‘sw~P) 11.21 

according to the definition 5.28. This is the invariant mass of the pair of clusters seiected by @. 
The simplest 2-jet spectmldisctiminator is defined as follows (cf.10.7 and 11.2): 

p2j,,(~;R) $2 Z-‘ldi, /d&S(s-S(&&R)). 11.22 

The normalization is such that 

In the spherically symmetric case z =(4x)*. 
Genemlizations to 3-, 4-...jet spectral discriminators as well as to the cases such as 2 jets + 

“muon” are straightforward. 

Qualitative behavior of pzj,,(s;R) 11.24 

In this case the mass detector is a ‘sum’ of two elementary ‘modules’, and its configuration 
is described by the pair it.& (four angles). An intinitesimal unit of spectral weight is now as- 
sociated with each such configuration. 

A S-spike occurs whenever the tinal state contains a pair of well isolated jets, and the size of 
elementary detectors is large enough to cover them; then the two modules can be moved inde- 
pendently around the corresponding jets without changing the measured mass, which corre- 
sponds to the situation of Sec. 11 .ll. The reasoning of Sec. 10.21 is repeated almost verbatim, 
and one concludes that the evolution of the resulting S-spike as R changes follows the same 
qualitative pattern as in the l-jet case (Sec. 10.29). In particular, the S-spike on the s-R plot 
has a similar form with a characteristic vertical line (&functional component) and two wider 
tails (cf. the right figure in 10.26). Of course, .Sj is now the invariant mass of the pair of jets. 

If the final state has more than two jets, then p2 jet(s; R) exhibits a &pike for each pair of 
jets; e.g. for a state with four jets, one would have 6 &spikes. They will be positioned on the s- 
axis at the invariant masses of the corresponding 2-jet substates. 

The remarks of Secs.10.33 concerning smearing of S-spikes in realistic situations and 
searches for particles decaying into a certain number of jets, remain valid in the most general 
case. 

A new point here as compared with the l-jet case is as follows. Suppose the final state con- 
tains a pair of jets that are not well separated from each other. Nevertheless, pz jet (s; R) would 
exhibit a &spike at s equal to the invariant mass of the pair. The contributions to the &spike 
come from those configurations of the mass detector when the two elementary modules par- 
tially overlap while covering both jets. The problem of separating the two jets does not arise 
here. 

Comparison with the conventional practice 11.25 
The spectral distribution from, say, pt j,,(~;R) after averaging over all final states is similar 

to mass distributions for 2-jet substates obtained within the conventional approach. But there 
are also important differences. 



The comparison is easiest with the cone-type algorithms. In that case, the conventional ap- 
proach consists, essentially, in choosing one position for an elementary mass detector per each 
jet, for any given R. After that is done, one value of invariant mass is computed per each 2-jet 
substate. Denote as S,(R) the resulting values of invariant mass. where n numerates the 2-jet 
substates. One then computes the distribution of the masses for the entire sample of events. 
This is exactly the same as if one replace our p2 je, (s; R) with the following expression: 

11.26 

where II enumerates the 2-jet substates as determined by the jet algorithm used. (The normali- 
zation factor Z here is not the same as in Eq. 11.22.) Performing an averaging of pyjz over all 
events is exactly equivalent to computing the invariant mass distribution of 2-jet substates. 
(The fact that we deal with invariant masses squared is not important; cf. Sec. 11.4.) 

Comparing Eqs. 11.26 and 11.22 allows one to see exactly what is the difference between 
the conventional mass distributions and our spectral discriminators. 

Graphically, using the conventional pyg instead of our pz jet is equivalent to replacing the 
density distribution in the right figure of 10.26 with a line parametrized by 

s=&(R). 11.27 

Now if jets are well separated, the curves 11.27 GVould have vertical segments that pass exactly 
over (parts of) the &spikes of the exact pz jet(s; R) (provided energy and momentum conser- 
vation is respected when jets’ 4-momenta are determined). But even then the corresponding 6 
functions enter into the r.h.s. of 11.26 with equal coefficients, which is not the case with the 
exact pz jet(s;R). In other words, even in the best case an important information about the 

event is lost. Moreover, in the conventional approach the coefficients of &functions in the 
r.h.s. of 11.26 are independent of R. So if the curve 11.27 has no vertical segments due to i& 
defined jets it is hard to choose one value for the value of the mass. On the other hand, the 6 
spikes (and the resulting bumps) of p2 jet(s; I?) have a variable height even for one event, 
which information can be used to better pinpoint the X’s mass. 

But the worst problem is encountered when the jets are not well-defined and the &spikes are 
smeared and/or overlap”. Then a conventional algorithm attempts to represent a continuous 
distribution with a few &functions; graphically, the smeared &spike of the right figure 10.26 is 
replaced with a curve. If the continuous distribution has narrow peaks then such a representa- 
tion may be meaningful. But if the peaks are not narrow, then whatever method one uses to 
position the &functions, one cannot do that stably. For instance, if one attempts to determine a 
weighted average point for the position of the curve for each R, then the result depends on 
how one separates the bump for this pair of jets from other similar bumps, which involves an 
ambiguity. Alternatively, if one attempts to draw the line along the maximum of the bump, 
such a pdure is unstable against measurement emrs (cf~ the discussion in Sec.23, esp. 
Fig.2.4). in either case, there occur “ambiguities” resulting in an additional error in the deter- 
mination of the mass of the particle one searches for. 

n We are talking about one event kere; the amearing due 10 averaging over many events is a separate issue. 
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On the other hand, when one computes a spectral discriminator, more information about 
each event is involved: One computes a spectral weight distribution from each event which de- 
pends in a well-defined C-continuous manner on the final state, and one fits the entire spectral 
weight distribution against theoretical predictions. At no point in data processing does one 
have to make unstable choices, and no instabilities occur. 

Discussion 11.28 

(i) The pure QCD background contribution to spectral discriminators reflects the QCD dy- 
namics of production of high-mass virtual partons - in fact, the structure of QCD matrix ele- 
ments. Therefore, measuring spectral discriminators (perhaps, modified by appropriate 
weights; cf. Sec. 13.30) may be used as tests of QCD. 
(ii) It is sufficient to perform the processing for the values of R only within an interval of typi- 
cal widths of jets resulted from the decay of X. An integration over an appropriate range of R 
may make the bump more prominent against the continuous background, especially its maxi- 
mum. 
(iii) The overall picture (&spikes and their evolution on the s-R plane) in more complex cases 
(e.g. in the case of 3-jet substates, or mixed cases like 2 jets + “muon” etc.) will be similar to 
what was described in Sec. 10.29. 
(iv) Recall the example of Sec. 10.30 (jet + “muon”). It does not matter what are, say, the ex- 
perimental cutoffs for the muon: one may simply sum contributions from ~21 events - what- 
ever the energies of the muon. The position of the bump relative to s should normally be not 
affected much by this. 
(v) Similarly, if the geometry of the entire detector installation is such that it covers only patt 
of the sphere around the collision point, then the integrations over the unit sphere would have 
to be correspondingly restricted. Of course, theoretical predictions would have to take such 
things into account. 
(vi) One does not have to determine the exact number of jets in each event: all events are 
processed, in principle, in the same way”. Nor does one have to identify jets. Even the events 
with X, in which individual jets are hard or impossible to resoive in a conventional way, will 
contribute their share to the bump at s = SX in the spectral discriminator. 

(vii) Fmm the point of view of theoretical predictions, higher order corrections may prove im- 
portant for a precise description of the characteristic tails in the right figure 10.26. It may well 
turn out that to extract the most from spectral discriminators one would need to include such 
corrections into theoretical predictions. Therefore, whatever discrepancies may remain be- 
tween theoretical predictions and experimental curves, they are either due to experimental data 
errors or to unknown theoretical higher order corrections - but never to “ambiguities” of jet 
definition. 

“A rcakic code may, of course. involve optimizations such that different events would be treated differently. 
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Practical computation of spectral discriminators 12 

This section summar+ d~.Us an algorithm to compute a spectral discriminator from data. The 
scheme described is insensitive to which concrete spectral discriminator one deals with (except 
that the integration over configurations of ‘mass detectors’ depends on how many - and what 
type of - parameters each configuration is characterized by). It also generalizes to other dif- 
ferential observables (including higher differential observables considered in Sec. 13.34) in a 
straightfonvard manner. The two realistic examples are jet +“muon” (Sec. 10.30) and two jets 
(Sec. 11.19). The exact discriminator is denoted as p(s; R). 

Note that a good part of the described scheme (the notion of a continuous regularization; the 
use of linear splines; the folding trick) might be of interest whenever one computes a differen- 
tial cross section etc. from a random sample of events with more or less significant data errors 
(in addition to the limitation of finite statistics). This is because the scheme systematically takes 
into account the arguments of Sec.2.5 so that all cutoffs are regularized and linear splines am 
used instead of the more conventional bin-type algorithms etc. Whether or not such a 
“politically correct” scheme would lead to a noticeable improvement of results depends on 
many factors (e.g. the size of statistical data errors and the desired precision of results, etc.). 
However, since additional computing costs required are minor one may consider using the 
continuous splines-based scenario instead of the bin-type algorithms as a matter of routine. 

In the case of spectral discriminators there are - in addition to data errors - also approxi- 
mation ermi; due to discretized integrations and an approximate representation of &spikes for 
each event. So here one has an additional motivation for the use of splines instead of bin-type 
algorithms. 

The data 12.1 

One deals with a finite sample of events. Each event is represented by a finite list of physical 
“particles” which in practice are the physical calorimeter modules lit up for that event. The 
length of the list depends on the event. Each “particle” then is a non-negative energy Ei and a 
unit 3D vector (diction) ii; the latter may be represented e.g. by three Cartesian coordinates 
or by two angles Bi, ‘pi. 

In the jet + “muon” case one also has the muon’s energy E,, and direction jr. 

The grid of masses 12.2 

One has to choose the interval of invariant masses s to work with (concerning other 
parametrizations see Sec. 11.4). Theoretically, it is [O,S,] - from zero to the maximal in- 
variant mass of the events in the sample. 

One might be tempted to truncate it at both ends. But that would affect the results of the 
folding procedure described below in Sec. 12.11. The folding trick involves a smearing between 
adjacent values of s, so if a truncation were introduced, then the validity interval of the results 
would get narrower after each folding, which may be undesirable. 

Anyhow, the interval of s should be divided into many equal’ subintervals. It does not seem 

’ Non-uniformity can be introduced via a change of the mass variable; cf. Sec. 11.4. One might wish to do this 
to focus better on a particular mass range. 
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to make sense. to choose the length of a subinterval to be much less than the error in computa- 
tion of the invariant masses of filtered substates.” However, memory permitting (CPU re- 
sources am not affected), one may choose it to be, say, half that - the folding trick of 
Sec. 12.11 allows one to double it any number of times.“’ 

In what follows, si , i = O,... N, denotes the boundaries of subintervals; so = 0 and 
SN = SW. Also, 

AsESi+l-s; 12.3 

is independent of i. 

The grid of R 12.4 
The maxhnal theoretically possible interval for R is [O,l] (Sec. 10.2). However, it does not 

seem to make sense to go beyond R = i (which corresponds to the elementary mass detector 
covering half the sphere; even that value may be too large). Because there is no interaction in 
the algorithm between different values of R, one can choose any values to work with and em- 
ploy optimizations that allow simultaneous computation for several values of R. 

Note, however, that one would like to determine the value(s) of R for which the bump cor- 
responding to the particle one searches for is the narrowest. This should roughly correspond to 
the average angular size of the resulting jets. 

Discretization of integrations 12.5 

The deli&ion of spectral discriminators involves an integration over all configurations of 
mass detectors. Each such configuration is characterized by positions of the corresponding 
elementary mass detectors. In practice, one would choose a finite number of positions ti and 

distribute them over the unit sphere uniformly” to form a dense grid. Then configurations of 
mass detectors can be labeled by a discrete index (say, y). 

Denote Sr 5 S(@,,, 0 P), the mass measured by the y-th mass detector. Then 

pW=Z-‘x7 6(s-sy). z=& 1, 

where the normalization factor Z ensures validity of 10.8. 
It should be remembered that even in the continuum limit for the integration in 10.7, the ex- 

act spectral discriminator p need not be a continuous function and may contain &-functional 
contributions (Sec. 11.8). 

If one defines the discriminator with special weights (cf. Sec. 13.32). those weights have to 
be inserted into the summands of 12.6. 

’ Remember that there are not only data errors but also errors due to discretization of integrations over unit 
spheres etc. 
’ If theam&r of subintervals N iscbosen as a power of 2 then the foldings can be done all the way down to 
one subinterval. In general, if N is propordonal to 2’. then f foldings are possible. 
N Uniformity is, strictly speaking, not necessary and is assumed for simplicity. With a non-uniform distribution. 
one should intmdnce appropriate weights in all the formulas (e.g. via systematic mappings of coordinates). This 
my bc used as an optimization trick; for instance, one could take more points around the peaks of the energy 
flow due to energetic jets-similarly to the adaptive integration routines. 
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General scenario. Regularization 12.7 

Numerical work with objects such as spectral discriminators that involve S-functional contri- 
butions is based on the use of a regulari~arion (Sec. 15.29). One computes a sequence of ar- 
rays rN (si; R) from the available data, and then chooses (empirically) an optimal value N = $ 

which is neither too large nor too small. It should not be too large so that the stochastic irregu- 
larities are sufficiently smeared, and it should not be too small so that the signal from tbe par- 
ticle one searches for is seen. Whether such a balance can be achieved depends on the size of 
the event sample and the precision of integrations. (RecaIl that any pair of jets in a tinal state 
- in the case of 2-jet spectral discriminator. any one jet in jet +muon case; etc. - contributes 
a bump to the spectral discriminator. But only the bumps that correspond to a particle decaying 
into jets am added up instead of being smeared away after averaging over many events.) 

practically, in view of the simplicity of the folding trick (Sec. 12.11) one computes from data 
one array rN(si;R) for a large enough N and then finds the optimal fl using foldings while, 
say, watching the results on computer screen. 

It should be emphasized that each value of rN (s;; R) is a correct observable in its own right: 
given intinite statistics and computer resources, it could be computed with intinite precision, in 
principle. 

Each element of the array rN(si;R) accumulates contributions from each event as is usual 
with any quantum mechanical observable. 

Computation of rN (si ; R) for one event 12.8 

The event is represented by the data described in 12.1. 
One runs a loop over all configurations of the mass detector (each configuration is labeled 

by y). At each step one runs a loop over the chosen values of R. At each step one computes 
cb(ii) = Q)y.R(ii) and then the invariant mass S = S(@oP). The obtained value S is used to 
add a contribution to rN (sj ; R) . 

Adding a contribution to T,,,@ ;R) 12.9 

Each configuration of mass detector adds a unit of spectral weight to the spectral discrimina- 
tor; the contribution is located at s = S computed previously for each R. In terms of rN (si ; R), 
one does the following. 

One determines i such that si I S I si+,, and redefines 

S-S. 
~N(s~+~;R)CTN(S~+~;R)+~. 

AS 
12.10 

At this point all the loops are CONTINUE’d. 
In the end one divides rN (si ; R) by Z, the total number of points used to discretize integra- 

tion(s) over the unit sphere(s) (cf. 12.6). 
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The folding trick 12.11 

This is based on the observation that linear splines for the number of subdivisions N /2 can 
be obtained from the splines for the number of subdivision N in the following simple way: 

The formula for the array rN(si;R) is a replica from 12.12: 

r~(si;R)=~r~~(S~i-~;R)+~r~~(s~i;R)+~r~~(S~i+~;R). 12.13 

It is implied that whenever an index goes beyond its boundaries, the value returned is zero. 
Note that the array on the 1.h.s. has (almost) twice as few elements as the array on the r.h.s., 

and the corresponding values si are twice as far apart. 
The folding trick effectively halves N without complete recalculations, and without making 

any further approximations. 

Of course, a concrete implementation of the algorithm need not follow the above description 
in every detail. 
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Advanced options 13 

There are several ways in which the formalism can be extended. We have so far been consid- 
ering the simplest kinematical context of the c.m.s. annihilation e*e- --f hadrons. Now we turn 
to modifications needed to adapt the formalism to the case of hadronic reactions. As was dis- 
cussed in [24], there are two points of view on jet counting in the case of hadronic initial 
states. One is to modify the algorithms developed for e+e- --f hadrons in a straightforward 
manner [64]. Tbe other is to emphasize the specifics of hadronic reactions, most notably, the 
invariance with respect to boosts in the direction of the colliding beams and the inclusive na- 
ture of the correspondiig jet-related observables [24]. Two simple modifications in the spirit of 
the first point of view are discussed in Sec. 13.1. Accommodating the ideas of the second ap- 
proach requires more involved and extensive modifications of our formalism, as discussed in 
Sec. 13.7. Lastly, in Sec. 13.29 we discuss the options available for constructing more complex 
C-continuous observables that use additional dynamical information that may be available 
about the reaction one studied in order to enhance the signal. The examples we consider are 
motivated by the top search experiments at FERMILAB [ 121, [ 131. 

Modifications for hadronic reactions, recombination-style 13.1 

Special reference frames for DIS 13.2 

In the case of deeply inelastic k:::c!::-rmcleon scattering it may be desirable to define jets in 
special reference frames [47]. To achieve this, we fust rewrite particles’ energies and the fhc- 
tors AV detined in 8.6 in a covariant form. Define P = (1,O) and 

pi=(Ei,pi), pi=Iqi, pF=o. 13.3 

Then 

E; = piP, AV = (pipi)(p;P)-‘(pjP)-‘. 13.4 

Now to make e.g. the jet discriminators (Sec. 8) “count jets” in any other reference frame, it is 
sufficient to choose a 4-vector such that P2 = 1 and its rest frame is the desired reference 
frame. Other observables (such as spectral discriminators of Sec. 11) are modified similarly. 

Suppressing rotward jets” 13.5 

In the case of hadrons in the initial state one may wish to modify the jet discriminators 8.8 to 
suppress contributions from spectator pat-tons (forward jets). Such modifications are easily 
done by analogy with how the recombination algorithms are modified in such cases (cf. [47]). 
For instance, it may be sufficient to introduce into j,,, (see 8.8) the factor 

Ai = 1 -cos2 tYli 13.6 

per each particle, where Bi is the angle between the particle’s direction and the beam axis. 
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Modifications for hadron-hadron reactions, rapidity-inclusive-style 13.7 

Using rapidity: cylinder replaces unit sphere 13.6 

Recall that in the spherically symmetric case of e+e- + hadrons we represented particles’ 
directions i by unit 3-vectors, i.e. points of the unit sphere parametrized e.g. with 8 and cp. In 
hadron-hadron collisions it proves advantageous to replace 0 with pseudorapidity q = Incot! 
(cf. [lo], [24]), and to work with transverse components of particles’ 3-momenta. This is 
equivalent to representing the directions i in terms of q and a unit 2-vectoi & orthogonal to 
the beam axis: 

i-(h.rl)-(cp.tl). 13.9 

This means that, instead of the unit sphere, one now deals with a cylinder, a direct product of a 
unit circle (the collection of all &) and a real axis corresponding to q. This is equivalent to 
taking out the two polar points of the sphere and stretching it to + m. 

iT can also be referred to as trcuLNer$e direction. Note that 

PT.&,b =cos(Pob = co+& -‘Pb). 13.10 

On the other hand, to avoid confusion it is reasonable to retain the interpretation of the scalar 
product of two directions as cosine of the angle between them: 

jaljb = cOsed . 

The natural integration measure is modified as follows. If R is a part of the cylinder 13.9 
then Eq.4.3 is still valid but “surface” is interpreted differently; in place of 4.4 one now has 

j di wCb ) = Is, d& c dv w(&.N = j;‘@ r dq ‘+‘(m 11). 13.12 

Defining angular separation 13.13 

The definition of angular separation for the spherically symmetric case in Sec.4.5 was based 
on the considerations discussed in Sec.7.41. For the cylindrical geometry and smaJl angular 
distances one has, instead of Eq. 7.40, 

where Q, =q, - Q. This definition retains a maximal resemblance both to the spherically 
symmetric version, Eq.4.7, and, for small (pob. to the conventional measure of angular distance 
used in cone-type jet algorithms: 

$2 =$&+&]. 13.15 

Note, however, that the Euclidean form of 13.15 (and 13.14 for small ‘pab) is completely ad 

’ Instead of which one could use the angle q. I prefer the coordinateless vector notation as more narurai. 
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hoc. It may have had some sense in the context of conventional algorithms where it might have 
been expected that jets should rather have smooth regular shapes but even then the issue of the 
form of jets is rather murky [24]. As was remarked in Sec.7.41, in the context of the new for- 
malism the preclustering algorithm is expected to be mostly used for srnaher angular resolu- 
tions so that the issue of the protojet shapes is completely irrelevant as long as the induced er- 
rors are kept sufficiently small (cf. Sec.7.41). On the other hand, the considerations of compu- 
tational efficiency may induce one to use an equivalent definition. There are many possible 
variants, and the choice may depend e.g. on the specific form of representation of the informa- 
tion about angular positions of detector ceils of a concrete detector installation. One example 
of such an alternative definition is as follows: 

13.16 

The theoretical considerations that tixed the definition of angular separation in the spheri- 
cally symmetric case of e+e- -+ hadrons (ease of analytical study of the jet discriminators) are 
probably not important in the hadronic case because analytical calculations are hardly possible 
here anyway. However, should one wish to take this into account, one may opt for the follow- 
ing definition that corresponds to one of the variants of angular distances discussed in [65]: 

ALab = cash q4,, - cos ‘pab. 13.17 

T.3 expression conforms to the structute of the eikonal factors in QCD matrix elements [6S] 
Eventually, some form of an “accord” may perhaps be needed to fuc the definition of ALab. 
The reasoning below is independent of the particular choice of the angular separation A&. 

Transverse energy 13.16 

Another modification in the case of hadronic reactions is that, instead of the total energy of 
the i-th panicle Ei it is considered more natural in this context to use its “transverse en- 
ergy” [241, 

Ei,= %Z Eilsin9il. 13.19 

The ordinary energy should be replaced with the transverse energy, 

Ei + Ei,T t 13.20 

in ah the formulas and interpretations of the preceding sections. Thus, the “energy flow” is 
now an abstract measure on the cylinder & x q. etc. Practically, all one has to do is to reinter- 
pret Eqs.4.20.4.21, etc. in accordance with the above. 

Ccorrelators 13.21 

The general formula for C-correlators 5.18 remains true with the above reinterpretations. 
However, since the two polesof the unit sphere have been removed, the required continuity of 
the angular functions (f,,, in 5.18; remember that it is now expressed in terms of q instead of 
0) does not now concern the “points” q = f- (formerly 8 = 0, x). This effect is seen e.g. in the 
formula for the C-correlator that computes invariant mass, Eq. 5.14, which now becomes 



(l-$i$j) 
‘mt = S(P)=CijEi,~Ej.~ Isine, sine ,, s I I 

13.22 

with the angular function that is singular as q--f &-. However, the total energy of the event is 
bounded by a constant so that the behavior of the “transverse energy flow” at n + do sup- 
presses the singularities of the angular functions. Such singularities are, therefore, spurious. 

Modifications of the optimal preclustering 13.23 

The reasoning of Sec.7 remains valid with the reinterpretation of Eqs. 13.9, 13.20 and one of 
the definitions of the angular separation discussed in Sec. 13.13. It should be emphasized that 
for smaller ycut one should opt for the computationally simplest among all equivalent de&i- 
tions. 

Modifications of jet discriminators J, 13.24 

The formula 8.8 and the reasoning that led to it remain valid in the new context provided 
one uses a new definition for the angular separation A& and all energies are transverse ener- 
gies. Since the hadronic case is kinematically more complex, it is no longer possible to present 
analytical formulas for, e.g., normalizations of J,, which will have to be determined numeri- 
cally for each choice of A&. Other properties (such as monotonic decrease for large m etc.; 
see Sec. 9) are retained independently of this choice. 

Modifications of spectral discriminators 13.25 

AU one has to do is the following: 
l Reinterpret the angular separation Aob in the definition of the eiementary filter Eq. 10.3 ac- 

cording to Sec. 13.13. 
l Recompute the normalization factors for all spectral discriminators, Rqs. 10.7. 10.32. 11.22. 
l Restrict each integration over 4 (position of an elementary mass detector) to the interval of 

pseudorapidity corresponding to the actual experimental data. 
The key qualitative features of spectral discriminators - S-spikes, their evolution etc. - ate 
independent of the particular kinematic context. 

Jet distributions w.r.t. ET 13.26 

As was clatifed in [24] there are physical arguments in the case of hadron-hadron collisions 
to prefer inclusive observables such as l-jet inclusive differential cross section do/dE, (used 
e.g. for precision determination of ES [66]). Such an observable is a natural candidate for 
translation into the language of C-algebra. In fact, the relevant construction is a simple ana- 
logue of spectral discriminators. Define: 

E,(P) s c;y E;,T 13.27 

Consider the l-jet spectral discriminator 10.7 with kinematic modifications described above, 
and use the observable 13.27 in place of the invariant mass. One obtains: 
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13.28 

The meaning of this expression is similar to spectral discriminators already considered: Each 
clean jet in the final state gives rise to a &spike in p1 j,l ( ET ; R) for an appropriate range of R. 
Averaging over all events yields a continuous distribution that is analogous to doltiT in the. 
high-ET region. The analogy would be. rather complete if all &spikes were of the same height. 
This, however, is not so, and the S-spikes have different height depending on the structure of 
the surrounding event. This means that there is some dynamical information blended into 
p1 jet (ET ; R) as compared with the simple counting of events in the case of do/ dET But this 
can hardly be considered a drawback - an advantage rather - given the intrinsically natural 
manner of how it is accomplished. 

Further options for Ccontinuous observables 13.29 

Even within the restrictions of C-algebra there is still a considerable freedom of choice to 
allow one to take into account the dynamical information that may be available for a particular 
experimental situation (e.g. from a preliminary study of the data using conventional approach). 
The general options outlined below should help one to do that. 

Generalized differential Ccontinuous observables 13.30 

In practice it is convenient to have in view a rather wi& c&s of C-continuous observables 
of the following form: 

W’#-Wy) WY7 oP)+-W, of?), 13.31 

where F, G and H are, typically, C-correlators (other C-continuous observables are also al- 
lowed), Q and Y are two families of filters parametrized by y which describes the geometry of 
the filters - in fact, the structure of substates the observable probes (cf. Sec. 11.13). H de- 
scribes the physical feature with respect to which the distribution is studied (e.g. the invariant 
mass of the substate or its total transverse. energy ET), while F, G and L may be used to en- 
hance the signal/background ratio (an example is given in Sec. 13.32). 

The C-continuity of the construct 13.31 follows from the results of Sec. 5. 

Example: using additional dynamical information to enhance signal 13.32 

Consider a search for particle X that decays into two jets, for which one uses 2-jet spectral 
discriminator 11.22 expecting to see a bump signaliig a virtual presence of X. L-et us show 
how additional dynamical information may allow one to enhance the signtiackground ratio 
by modifying the definition 11.22 along the line of 13.31. 

For instance, suppose the jets resulting from the decay are expected to be accompanied by 
no less than, say, 3 jets. Then the signal can be enhanced by multiplying each contribution to 
the spectral discriminator (the integrand of 11.22) by J,(s4,4z2;R 0 P) (= G in 13.31) where 

5@,,&;R(ji) E 1-@&i2;R(ji) f 13.33 
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and OB,az2:R is the same filter that describes the mass detector used in the defmition of the 

spectral discriminator (cf. 11.20). The point is that the filter sG, ++* ;R defines a substate that is 

complementary to the one being tested by 0~~~~~~. If the complementary substate has less 

than 3 jets then J3($,dz2:R 0 P) suppresses the contribution (the properties of the observahles 
J, are described in Sets. 8 and 9). This would affect the normalization 11.23 but that is of lit- 
tle consequence as long as the desired suppression is effected. Note that such a factor can be 
raised, without spoiling the C-continuity, to any positive power which may make the suppres- 
sion sharper. 

Similarly, suppose one expects that the 2-jet events cannot contain the particle one searches 
for (i.e. X is always accompanied by at least another jet). Then it is natural to modify the ex- 
pression of spectral discriminator by simply multiplying the contribution to it from each event 
P by (a power of) the ordinary 3-jet discriminator J,(P) (= F in Eq. 13.31). 

One could also use information about expected angular distribution of the jets in the final 
state to introduce angular weights (= h in Eq. 13.31). 

The above scheme is generalized in a straightforward way to the case of, say. particles that 
decay into 3-jets and are mostly produced in 6-jet events (which corresponds to the top search 
at the FERMILAB Tevatron in the purely hadronic channel [23]). 

Higher differential Ccontinuous observabies 13.34 
Similarly to differential cross sections, one can define differential C-continuous obsc. kks 

with respect to more than one parameter. For this, it is sufficient to inselt additional 6 
functions into the integrand of 13.3 1. 

As an example, consider the Lego plots in Kg.4 of [13]. Their (simplified) C-continuous 
analogue would be as follows. One considers a 3-jet spectral discriminator and inserts an addi- 
tional &function, 

where 

%&i3;R) =S(Q4,,6243;R oP), S”(~,.~,.~3;R)=.~~n23S(~~=46;R +). 13.36 
. . 

n#b 

The function S” is the minimal invariant mass among pairs of jets from the three jets selected 
by the filter in S’. 

Transition to ~j = sz can be performed as explained in Sec. 11.4. 

The above examples demonstrate that the expressive power of C-algebra is sufficient for 
practically any application of the precision measurement class. 
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Summary and conclusions 14 

The results of this work can be summed up as follows: 
l A systematic analysis allows one to reinterpret the “ambiguities” of the conventional jet 
finding algorithms as instabilities caused by the inttinsic discontinuity of such algorithms. Such 
instabilities are inherited in the form of systematic errors by any observable defined on the basis 
of such algorithms. 
l The instabilities are eliminated if observahles am chosen to be continuous in an appropriate 
sense. A proper continuity of observables is determined uniquely by the structure of errors of 
multimodule calorimetric detectors. It can be described as a stability with respect to “almost 
collinear” fragmentations that cannot be distinguished by a finite precision calorimetric detez- 
tor. The fact that real-lie calorimetric detectors have finite energy and angular resolutions is a 
key consideration that has been missing in the discussion of jet-related fragmentation-invariant 
observables: The resulting continuity (which we called calorimetric continuity, or C-continuity) 
restricts the options for construction of observables rather severely - yet leaving enough free- 
dom to allow one describe any jets-related physics in the language of such observables; cf. be- 
low. 
l C-continuity ensures that observables possess optimal properties with respect to data errors. 
On the other hand, a use of continuous weights instead of hard cutoffs corresponds better to 
the physical reality of abs+e. of any internal boundaries separating fti states with different 
“numbers of jets” in the continuum of all possible final states. 
l A rather wide family of C-continuous observables can be constructed within the framework 
of the so-called C-algebra. The C-algebra contains: 
- A special class of observables (the so-called C-cormlators) that have a rigid analytical 
structure; in particular, their dependence on particles’ energies is fixed. The most important 
among them are: (transverse) energy; invariant mass; a sequence J,. m = 1,2....,- of the so- 
called jet discriminators ([I51 and Secs.8, 9 and 13.24). (Note that the construction of the lat- 
ter differs slightly for different kinematical situations such as e+e- + hadrons. DIS or hadron- 
hadron collisions; cf. Sec. 13.) 
- A set of rules to conshuct new C-continuous observables from those already available 
(Sea 5.22 and 13.29). 
- A set of rules to translate the conventional observables based on jet algorithms into the lan- 
guage of C-algebra (the filtering to select “multijet substates”, Secs.5.25, 10.2, 11.14; the 
“spectral” construction to describe distributions of properties - e.g. masses - of “multijet 
substates”, Sets. 10.1 and 11.1). 
l The C-correlators that form a basis of C-algebra have the form of multiparticle correlators 
and, therefore fit tightly and naturally into the framework of Quantum Field Theory. It is fair to 
say that any property that can be meaningfuuy studied within QFT (which summarizes a vast 
body of experimental knowledge) should be expressible in the form of multiparticle correlators. 
Since there is, really, little reason to expect that QFT may break down at the energies of the 
current and planned colliders, one concludes that the taking into account of “the QFT aspect” 
is the other key ingredient that has been missing from the discussion of jet-related observables. 
The fact that the C-correlators fit naturally into the QFT framework opens a prospect for 
higher quality theoretical predictions in the physics of jets. 
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l It should come as no surprise that because only “kinematical” restrictions went into the re- 
striction of C-continuity, it proves possible to express any physics conventionally studied via 
jet finding algorithms, in the language of C-continuous observables. With such observables, at 
no stage does one have to identify individual jets. As a result, the problem of instabilities of jet 
algorithms in its cunent form simply vanishes. 
l In the new formalism, jet algorithms retain a role of an approximation trick for faster com- 
putation of such observables from data (preclustexing). The jet resolution parameters of con- 
ventional algorithms become parameters that control the corresponding approximation errors. 
In particular, there is one algorithm (Sec.7.20) that is optimal from the point of view of mini- 
mization of such approximation errors; such an “optimal preclustering” happens to combine 
features of various conventional jet algorithms. In particular, it allows one to recombine any 
number of particles into a protojet using a well-defined unambiguous analytical criterion 
(Sec.7.47). 
l The explicit - and rather simple - analytical structure of the observables from C-algebra 
results in a much greater flexibility as regards construction of approximation tricks etc. than in 
the case of the conventional scheme. One example is the expansions in energies of soft parti- 
cles (Sec.7.4; cf. the analysis of errors due to missing energy in Sec.7.15). Other tricks will 
undoubtedly be found in the context of conrete applications. 
l The advantages of the new formalism - a lesser sensitivity to data errors, absence of in- 
stabilities, advantages for theoretical studies including calculations, computational flexibii - 
should be expected to be least negligible in the appl+tions that can be characterized as preci- 
sion measurements, i.e. whenever the quality of both experimental numbers and theoraical 
predictions is important. 

Objections 14.1 

Higher computing resources 14.2 
One objection to the new formalism is that C-continuous observables require more comput- 

ing resources to compute them from raw data. That, however, is a purely technical matter. 
Fit of all, the regular analytical stxucture of new observables allows many analytical and pro- 
gmmming optimizations. Second, little additional computer power is needed for computing 
new obsetvables for the values of control parameters of jet algorithms that (values) are cur- 
rently employed. As more computing power becomes available, more precise computations can 
be done (see below). 

Ambiguities 14.3 

One may argue that there a~ still ambiguities to fix in the definitions of various C- 
continuous observables (e.g. the shape of elementary mass detectors in the constnrction of 
spectral discriminators in Sets. 10 and 11, etc.). The answer to this objection is that it was not 
ambiguities per se that were the problem with conventional jet algorithms, but heir enhance- 

mfnf by instabilities. Once the cause of the enhancement is eliminated, all one has to worfy 
about is a consistency&the definitions used in &on&a! urd er+mcntal calculations.’ 

i Of course. one may discover af?er having got rid of the systematic errors due to “ambiguities of jet algorithms” 
that what one really needs is more theoretical higher order corrections, or a higher precision of one’s calotime- 
ters. or a greater bandwidth of one’s data acquisition system-but that is a completely different situation. 
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Psychological objections 14.4 

More difiicult to cope with (in a sense) are objections of a psychological nature, mostly due 
to an understandable inertia of thought. 

One such objection is that a jet findiig algorithm, if used in a consistent manner by theorists 
and experimentalists is a well-defined observable. Of course, one CM call any number com- 
puted from data an observable. However, it stands to physical reason that defining a physically 
correct observable must take into account errors of measurement and calculation; a measure of 
stabiity against such errors mn.sr be incorporated into the definition; and one mu.rt be at least 
aware of the available options and the consequences of the choices one makes. Instabiity of jet 
algorithms is a self-intlicted woe, and there is no reason why it should not be eliminated when- 
ever technically possible and physically necessary. 

On the other hand, it is not clear how one can rationally argue against the point of view that 
the jet pattern, i.e. the number and 4-momenta of jets for a final state (cf. Eq. 1.2). is only an 
approximate description of that tinal state. One may or may not be happy with such an ap- 
proximation. In the former case, one can simply ignore the “ideal solution”‘. In the latter case, 
however, one would like to know how to improve upon it. The new formalism offers a sys- 
tematic answer to this question. 

Another psychological difficulty is that some effort is needed in order to learn to think di- 
rectly in terms of the new formaliim rather than keep interpreting and judging it (often with 
misleading conclusions) in terms of the old pamdigm based on a naive definition of jets, which 
the new formalism is meant to supersede. The habit of thinking in terms of “jets” ic deeply in- 
grained, in part due to its highly visual character. However, physical theories are not always 
completely intuitive, and physical meaning is not the same as quasiclassical visualization. Nev- 
ertheless, the jet/parton picture remains a valid and useful approximation - but only an ap- 
proximation to the precise QFT-compatible description based on the C-algebra. 

Transition from conventional jet finding algorithms 14.5 

A transition to the use of the C-continuous observables - in situations where the additional 
computational resources required by the new formalism would be justified - could be per- 
formed gradually. Indeed, the conventional data processing consists of two steps: fmt, a jet 
tinding algorithm computes a jet pattern for each event (Eq. 1.2); second, an observable is 
computed from jet patterns. 

The new formalism allows one to YransIate” any such observable into the language of C- 
continuous functions (C-correlators. spectral discriminators, etc.). The difficulty here is that 
the translation is not a mechanical procedure. But once one worked through typical examples 
(Secs.S-13), it should not be particularly difficult. Because the framework of the C-algebra in- 
corporates only “lcinematical” restrictions, any truly observable physical feature” can be ade- 
quately expressed in the language of C-continuous observables. 

Since jet algorithms are treated as an approximation trick (=preclustering) within the 
framework of C-algebra, one can start by simply replacing the old observables with new C- 
cotatieeous ones - without changing the jet a!gorithm”‘, and reprocess the same events in or- 

i As did the Indiana State House of Representatives in 1887 when it decreed that x = 3 [67]. 
a,Not to be confused with an expression of such a feature in the language of jet algorithms. 
y Eventually, of course, the optimal preclustering will have to be used but that can be done any time. 
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der to compute the new observables (recall e.g. that only O(100) events were used to discover 
the top quark [12], 1131). This allows one to test the algorithms with a bmited but meaningful 
sample of events. 

Next, since C-continuous observables retain their meaning and qualitative behavior even if 
one deals directly with the original events instead of their jet patterns, one can choose a smaller 
value for jet resolution ycut (or jet cone radius R) and repeat the entire computation. This 
means that fewer distortions would be introduced into the computed observables but more 
computing power would be needed. Continuing in this fashion one should be able to see. how 
far one is able and willing to go with the available computer resources. 

Therefore, although a prospective transition to the use of C-algebra for quantitative descrip- 
tion of physical phenomena involving hadronic jets in situations where the limitations of the 
conventional approach are too restrictive -although such a transition does represent a change 
of direction, it does not mean a complete break with the tradition of jet finding algorithms, and 
can he accomplished in an evolutionary manner. 
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Appendix. Abstract measures on [O,l] 15 

An excellent source on abstract measures with emphasis on the functional point of view is 
[42]. For numeric handling of mensums one only needs to put together a few tricks that are 
well-known in applied mathematics. In this appendix only measures on the unit interval are dis- 
cussed. The primary purpose is to explain the computational issues associated with spectral 
diSCliIniMtOrS. 

Continuous functions. Constructive aspects 15.1 

The notion of (abstract) measure is derivative from that of continuous function. Consider 
continuous functions defined in the unit interval 0 S s 2 1. and the continuity extends to the end 
points. Define the Co-distance’ between two such functions: 

Ilf -Al@ 22 (wllf(s) -ml . 

We say thatf approximates g in ?k sense of p if the Co-distance 15.2 is sufficiently small. 

Linear splines 15.3 

Split the interval [O,l] into N equal subintervals; the boundaries between them are the N + 1 
points si =i/N, i=O,l,... N.FmN+lnumbersfi, i=O,l,..., N.Considerafunction~(s) 
such that it takes the values fi at the points ri. f(si) = fi, and interpolates linearly in between: 

J(S)= N[fi(Si+l-S)+fi+,(S--i)], Si S~lSi+l. 15.4 

We call such functions linear splines. The following two facts are important here: (a) Linear 
splines are perfectly constructive objects: they can be represented as arrays [O:NJ of floating 
point numbers. (b) One can use them to approximately represent any continuous function. 

Indeed, suppose fi = f(si). By choosing N large enough, f(s) can be made to represent 
f(s) with any precision E for ah s simuhaneousiy (i.e. in the sense of Co): 

or If(s)-.7W[ <E forall OSs<l. 

The linear splines play the same role for continuous functions as the floating point numbers do 
for real numbers. Note that if N is tixed, different continuous functions will be represented 
with a different Co-precision. 

A convenient representation for 15.4 is as follows. Detine: 

h(s) = =(o. l-lsl), hN(s) = Nh(Ns), lilihN(s) = 6(s). 15.6 

’ Co is a standard mathematical notation for things pertaining to continuous functions when the latter adjective 
is inconvenient as in the case of ~-distance. The superscript 0 indicates that one talks about continuity of the 
function itself only; C’ would mean that there are continuous first or&r derivatives, etc. The distance is e te- 
cause if sequence of continuous timctions converges in the sense of C?distance. then the limit is a function that 
is automatically continuous (i.e. also C?). 



Then 

J(s)~:~~hhr(S-S;)f(s;) 15.7 

Measures on [O,l] 15.8 

Imagine a subroutine (called, say, p) that accepts as an argument a variable length army 
f [0: N] of floating point numbers, and returns one number as a result, pw. Since the arrayf 
can be regarded as representing a linear spline, the subroutine defines a function on the space 
of all linear splines. To distinguish linguistically the ordinary functions and these new functions 
that have ordinary functions as arguments, the new sort of functions are called function&. 
Thus we say that p is a functional on linear splines. 

Examples of functionals 15.9 

(1) p(f) = surface under f(s)g(s) where g(s) is an integrable function (the algorithm here 
involves iterations to perform integration). 
(2) p(f) = the value f( x/5) (can be computed with arbitrary precision). 
(3) p(f) = surface under sin(f(s)). 
(4) Anangeallmtionalnumbersfrom[0,1]intoasequencer,(e.g.~,~,f,~,~...).Then 

P(f)= L $,(,) . 
n=l,Z,.. 

15.10 

The series is convergent because f is bounded. But the convergence is slow enough to ensure 
that one has to deal with long sequences of rational numbers to attain high precision. 

The subroutines (l), (2) and (4) have an additional property: their results are linear with re- 
spect to theu argument (f). 

Furthermore, take a sequence f, of linear spline functions that approximates a given con- 
tinuous function f in the sense of C?. What can one say about the sequence p(f”)? In general, 

nothing. So, one has to make the following . . . 

Strong assumption 15.11 

For any sequence of linear spline functions f, that converges in the sense of Co to some 
continuous function f, the sequence of numbers p(f,) should converge in the usual numerical 
sense, and the result is the same for any sequence that approximatesf. (This is true in all the 
above examples.) Then the subroutine p effectively defines a functional on any continuous 
function. In other words, for any continuous functionf one can compute p(f) to any accuracy 

by choosing a linear spline approximation 7 that is sufficiently close to f in the sense of C”, 
and evaluating p(r). 

I emphasize that such a subroutineneed not give meaningful results if a different type of 
closeness for its argument f is considered. For instance, if one computes the values of p for a 
partial Fourier series for f, then - whatever the precision of computations - the resulting 
numerical sequence will not, in general, converge. Thus, choosing a wrong type of approxima- 
tion/convergence (in the case of Fourier series, it is convergence “in the sense of L’“) would 
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render computations meaningless. 

What are most general linear functionals on Co? 15.12 

It is exactly such functionak that are cakd measures.’ The crucial requirements are (i) that 
measures are linear functionals, and (ii) that they are. defined on the entire space Co. 

A convenient syntactic convention is to write a measure as an integral: 

Pm = gtp(s)f(s). 15.13 

This emphasizes the fact that the notion of measure is an extension of the notion of ordinary 
function &cause an integrable function p(s) defmes a measure according to 15.13). But it 
may prompt one to handle a measure as one would a continuous function, which may lead to 
erroneous results. 

Continuity of measures 15.14 

Since we are dealing with measures in a practical, numerical way the issues of errors - 
therefore, continuity - are centraI. In standard textbooks one usualIy requires of measures to 
satisfy certain continuity properties. However, a remarkable recent theorem [68] ensures that 
measures defined as above automatically possess those properties.” More precisely, any meas- 
ure p is automatically continuous in the following sense: If a sequence of continuous functions 
f, converges in the sense of Co then the embers p(f,) converge in the usual numerical sense 

Measures as additive functions of subsets 15.15 

In older textbooks and in all advanced textbooks on the theory of probability where meas- 
ures are routinely studied (e.g. [46]), one defines measures differently - as additive functions 
on subsets. For instance, if one takes a subset S of the interval [O,l J to consist of a sequence of 
non-intersecting intervals. then the total length of S is a measure: the length of a union of two 
such non-intersecting subsets is a sum of their lengths. After that one embarks upon an agoti- 
ing study of which subsets are measurable”’ etc., most of which has nothing to do with con- 
structive mathematics. The only textbook I know of that discusses both definitions systemati- 
cally with the functional definition as a primary one, is [42]. The modem defmition in terms of 
linear functionals is better suited to our needs: Our measures emerge directly as sums of 6 
functions (cf. 10.7). 

General structure of measures 15.16 

In general, a measure is a sum of two components: one is an integrable function (this is 
usually a continuous function with a few integrable singularities - e.g. s-l’*); the other is lo- 
calized on a zero length subset of [O,l] (this is usually a discrete - perhaps infinite - sum of 
&functions (cf. 15.10). 

iInthemikntent&yaaded”absttaa rneaaes” to &?i-oid iate..erm with physical measurements. 
’ The theorem is valid if one replaces the notorious Axiom of Choice that allows one to prove “existence” of all 
sorts of pathological countcrexamples, with Ihe so-called Axiom of Determinateness (cf. [69]) which offers a 
more adequate formaliition of consauctive aspects of mathematics. 
u The modem answer (the Mycdski-Svercrkowski theorem; cf. [69]) is, aff. It is valid in the same context as 
the Wright theorem mentioned above. 
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A typical spectral discriminator is a sum of a continuous component and a finite number of 
&functions (Sec. 11.1). 

Convergence of sequences of measures 15.17 

This is a central issue because we want to perform computations with measures. This means 
that our expressions/subroutines for measures will be only approximations, and if we want 
them to be indeed approximations. we should understand precisely what convergence means in 
the case of measures. 

From among different types of convergence of measures we need the one that is natural in 
our problem. We call it convergence in the sense of measures.’ 

Consider a sequence of measures pn. Suppose it is such that for any continuous function f 
their values p.(f) form a convergent sequence of numbers. The limit defmes a functional that 
is automatically liiear. Since we require convergence for each continuous function, the tesult- 
ing functional is defined on each continuous function and is, therefore, a measure automati- 
cally. Wright’s theorem (see Sec. 15.14 above) guarantees continuity of the resulting measure 
with respect to variations of its argument (in the sense of C?). 

The rates of convergence for different f are not correlated. This means that there is. in gen- 
eral, no single number to characterize precision of an approximation in the sense of measures.” 

A rule of thumb is, the fasterf changes, the slower the convergence. This has an important 
practical consequence: 

Quality of approximations 15.18 

From the above one can infer that if a measure p is known approximately, then numerical er- 
rors of p(f) differ for different f. In particular, for some f the errors may be judged accep- 
table, for others, too large. Spectral discriminators are constructed by accumulating statistically 
data from many events. As the number of events in the data sample is increased, the spectral 
discriminator obtained is expected to converge to the “true” one. But. with a limited statistics, 
on which f the obtained precision will be (un)acceptable? 

There is no concrete numerical answer to this question but a ~12 of thumb is that the 
“softer” the shape off, the better the precision. For instance, it is easier to obtain a high preci- 
sion for the jet discriminators J, (Sec. 8.8) for smaller m. 

Approximate description 15.19 

Now we turn to practical issues of how to construct and manipulate approximations for a 
given measure. Fmt, we have to agree on what is “approximate”. In all cases the meaning is 
dictated by the problem, and is as follows. A sequence of measures pn converges to a given 
one, p, if for any continuous test functionf one has convergence p,(f) + p(f) in the usual 
numerical sense. Note that the rate of convergence depends on f. Practically, one chooses a 
sufficiently rich finite set of test functions fi, and measures closeness of pR to p by the differ- 

i In the context of functional analysis it is a special case of the so-called *-weak topology [41]. In the context d 
the theory of measure proper it is often called simply weak convergence [46]. 
ii Mathematically. this means that the *-weak topology is in general not me&able [41]; even when it is (e.g. in 
the case of normalized measures on a compact set), the corresponding distance function is not too usefaul. 



Measures represented by continuous functions 15.20 

For measums represented by continuous functions, one may use linear splines. Note that a 
sequence of continuous functions that converges in the sense if Co, also converges in the sense 
of measures. Linear splines approximate a continuous function in the sense of Co, therefore, 
will automatically result in a satisfactory approximation in the sense of measures. 

Unfortunately, this obvious method is inapplicable in our case because spectral discrimina- 
tors emerge as sums of S-functions - not as continuous functions. 

S-functions 15.21 

The fact is. any measure can be approximated to arbitrary precision in the sense of measums 
by finite linear combinations of &functions (cf. 15.26). A well-known case when this occurs is 
a Monte Carlo evaluation of an observable 2.7. Then one approximates the expression 2.7 by a 
finite sum, - Ii F(y), which is equivalent to approximating the probability measure x with a 
sum of &functions as follows: 

Np) - Zi &pvpi). 15.22 

In terms of computer data structures, such a linear combination is just a finite-length list of re- 
cords. tech containing two fields: the coefficient of the S-function, and its location. For meas- 
ures on [O,l]. the location is just a number from this interval. 

Constructing regular approximations 15.23 

The problem is that in our case the locations of &functions are irregularly scattered over the 
unit interval so that visualimtion and comparison are difficult. Moreover, fluctuations due to 
ertors may be unacceptably large. So, a more regular representation is needed. 

Recall that a measure is a collection of its values on continuous functions. Approximate a 
continuous test functionf by a linear spline fN, Eqs. 15.4 and 15.7, where yN + f as N + 00 
in exactly the sense we need (i.e. in the sense of C? that ensures convergence of values of any 
measure p). This fact allows one to approximately represent: 

The explicit expression for rN is as follows: 

This is a continuous function of s but only a finite army of its values rN (si) is actually used to 
represent p (cf. 15.24) - for a better approximation one takes a larger N’ and the new array 
rN,(ri) consists of values of a different continuous function. 

The r.h.s. of 15.24 is exactly the value on f of a sum of S-functions located at si, with 
weights equal to r&). So, we have obtained the following approximation: 
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15.26 

pN converges to p in the sense of measures 15.27 

This is ensured by construction. 
An impottant fact is that whereas p was any measure -perhaps, a sum of &functions scat- 

tered irregularly within [O,l] - the S-functions of pN are. distributed in a regular manner, in- 
dependently of what p was. Therefore, the array of numbers rM (si ) , i = 0.1,. . . , N is a conven- 
ient approximate representation for a measure, to be interpreted according to 15.26. Choosing 
N large enough, one can make the approximation as precise as needed. 

r,,,(+) are valid observables per se 1528 

An advantage of the above construction is that the numbers r,,,,(si) are simply the values of 
p on test functions h,(s- si) - without any approximations involved. This means that ifp is 
a spectral discriminator obtained by collecting statistics from many events, then r,(si) are 
perfectly valid scalar-valued observables per se. In particular. if p is known precisely (e.g. from 
intinite statistics experiments with no systematic errors etc.) then they are also known pre- 
cisely. In other words, the “measured” values for r,(ri) (i.e. the values computed from a tinite 
sample of data) will converge to the ideal values as the statistics is increased, and can be used 
to compare experimental data with :l:zry. 

However, statistical fluctuations (including those due to data errors) are smaller for smaller 
N (cf. Sec.2.21). 

Regularization 15.29 

This is a fundamental notion formal&d and systematically developed for applied problems 
by Tikhonov and his school [70]. While any exact spectral discriminator p(s) is a continuous 
function after averaging over all final states its approximate representations ij that emerge due 
to a discretired integration over y in 11.2 arc rather irregular sums of S-functions. Although in 
principle p converges to p in the sense of measures (when the event sample and the precision 
of integrations are increased), one would like to obtain a more uniform approximation. This is 
achieved as follows. For each approximation id, one constructs the sequence jj,,, as described 
in Sec. 15.23. (&, ate pm&ally represented by the corresponding arrays r; (si) .) Then one 
chooses N = fl as large as possible - yet not too large so that the irregularities (due to the 
stochastic nature of the approximation p) would not be too manifest. The result pi 
(equivalently, the array 7~) is the required tegularization. As ij is made more precise (e.g. by 
increasing the event sample), the optimal ,&7 goes to D=, and pN (or r; ) + p . Precise mathe- 
matical criteria for choosing the optimal fl are unknown at the time of this writing so it is best 
to +uocecd in an empirical fashion A convenient tool for that is the folding trick of Sec. 12.11. 
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Appendix. General theory of abstract measures 16 

The defiuitions and facts listed below constitute a minimum of information on abstract 
measums presented for completeness’ sake. A reader inexperienced in this sort of mathematics 
may find it difilcult to understand it; in that case, one should consult the material of Sec. 15 as 
well as an expert mathematician. A much more complete source is the excellent advanced text- 
book [42]; general functional-analytic aspects am treated with elegance in [41]. 

Note that standard expositions (like [42]) are gmpplmg with difficulties due to an unfortu- 
nate axioma&ati on of infinite constructions (pathologies due to the Axiom Of Choice). These 
have nothing to do with practical mathematics and are ignored below. (See the remarks and 
references in Sec. 15.8.) 
A) Consider a finitedimensional smooth manifold M. In our case this can be a Euclidean 
vector space, a sphere, a cylinder. or a d&ct product of a finite number of these. 
B) Testfunction on M is a continuous numeric-valued function on M such that it takes non- 
zero values only within a compact subregion K of M; i.e. K is such that it does not stretch to 
intinity in any direction. If M is a (direct product of) sphere(s) than it has no infinite directions 
and the restriction does not apply. 
C) Meurnre on M is a linear functional defined on all test functions. (This definition is suffi- 
cient for ah practical purposes.) Two generic examples: (i) a linear combination of &functions; 
(ii) an integrable function. 
D) Measures form a linear space, i.e. one can take their linear +. :irbinations. 
E) Convergence of measures can be defined in several ways. The one we need is the most 
natural one (sometimes called weak convergence of measures; it is a special cam of the *-weak 
topology in spaces of linear functionals; we call it convergence in the sense of measures), and 
is as follows: A sequence of measures converges if their values on any test function form a se- 
quence that converges in the usual numeric sense. 
F) Such convergence is, in general, not merrizuble. i.e. cannot be described by a single dis- 
tance function. This is possible in the case of a compact M (e.g. a sphere) but even then such a 
distance function is not practically useful. 
G) The linear space of measures is closed with respect to the convergence in the sense of 
measures. 
H) Any measure can be upproximured (with respect to convergence in the sense of measures) 
with continuous functions (e.g. multidimensional analogues of linear splines). This can also be 
done with fiuite linear combiiations of S-functions. These two facts are the basis of how meas- 
ures am to be handled in numerical applications. 
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